

This document is published in:

IEEE Communications Magazine, 2013, 54(4), 66-73.
DOI: http://dx.doi.org/10.1109/MCOM.2013.6495763

© 2013 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

IEEE Communications Magazine • April 20132 0163-6804/13/$25.00 © 2013 IEEE

1 The term link refers to a
topological area bounded
by routers that decrement
the IPv4 time to live
(TTL) or IPv6 hop limit
when forwarding the
packet, as defined in RFC
4903.

INTRODUCTION
The connectionless paradigm of the network
layer of the Internet has naturally made possible
source address spoofing, that is, the use of a
source address by a node which is not allowed to
use that address. Attackers can use spoofed
source addresses to prevent tracing and to defeat
source-based filtering when performing flood-
based denial-of-service or poisoning attacks, or
when propagating worms or malware [1].
The concern about the risks induced by

source address spoofing has resulted in the rec-
ommendation of the deployment of ingress filter-
ing [2]. This technique consists of the filtering of
any packet with a source address that does not
belong to the set of prefixes assigned to the part
of the topology from which the packet comes.
Ingress filtering is usually performed close to the
site at which packets are originated, in either the
egress router of the site or the ingress router of
the direct provider. This strategy of deploying
filters close to the site implies not only more
effective protection, but also that it is easier to
determine the prefixes corresponding to the site,
by either explicit configuration or inference from
the routing tables. The effectiveness of this tech-
nique largely depends on its widespread deploy-
ment, since any host connected to a site where
ingress filtering is not performed could generate
packets with any forged address.
However, even if ingress filtering were uni-

versally deployed, we would still face residual
vulnerabilities. In particular, because ingress fil-
tering operates at the prefix level, an attacker

can still spoof any address from the prefix
assigned to that part of the topology. This
enables a number of serious attack vectors,
allowing, for example, worms/malware to spoof a
source address in order to hide the identity of
the infected system. For a thorough description
of this and other attacks enabled by source
address spoofing that are not protected by
ingress filtering, the reader is referred to [1].
In this article, we present SAVI, a mechanism

that complements ingress filtering and provides
increased protection. SAVI is in the final stages
of standardization in the Internet Engineering
Task Force (IETF).
In a nutshell, SAVI protects each individual

address from spoofing by placing the source
address filters closer to the nodes, preferably in
the layer 2 switches that connect the nodes of a
link.1 In this deployment scenario, a switch con-
figures a SAVI binding between an IP address
and a node-specific layer 2 binding anchor. The
physical port of the switch to which the node is
attached is the canonical example of a binding
anchor. The bindings are automatically created
by inspecting the protocol exchange used to con-
figure the IP addresses of the nodes. This allows
the switch to filter out packets that do not corre-
spond to an existing SAVI binding.
The contributions of this article are the fol-

lowing. We provide an integrated perspective of
the SAVI solution, whose components are
described in multiple IETF documents, we pro-
vide insights into the rationale for key design
decisions, and we provide the background need-
ed to understand the different requirements that
lead to the final design; we also compare the
solutions and discuss their applicability.
The rest of the article is organized as follows.

First, we present the design background for
SAVI. We then discuss the SAVI architecture.
Next, we describe the solutions for the different
address configuration mechanisms: Dynamic
Host Configuration Protocol (DHCP), nodes
locally configuring IPv6 addresses, and SEND.
We compare the three SAVI solutions. Finally,
we draw some conclusions.

DESIGN BACKGROUND
As the filtering process is moved closer to the
end nodes, the difficulty in determining which
source addresses should or should not be filtered

ABSTRACT
In this article we describe Source Address

Validation Implementation (SAVI), a security
architecture being standardized by the IETF to
prevent source address spoofing within a link.
SAVI devices, usually layer 2 switches, create
bindings between the IP address of a node and a
property of the host’s network attachment, such
as the port through which the packet is received.
Bindings are created by monitoring the packet
exchange associated with IP address configura-
tion mechanisms such as DHCP, SLAAC, or
SEND. SAVI devices filter out packets whose
source IP address does not match with an exist-
ing binding.

TOPICS IN STANDARDS

Marcelo Bagnulo and Alberto García-Martínez, Universidad Carlos III de Madrid, Spain

SAVI: The IETF Standard in
Address Validation

IEEE Communications Magazine • April 2013 3

increases. When ingress filtering is performed
for a site, the set of source addresses that can be
used legitimately results from the address assign-
ment process at the prefix level, and the configu-
ration of the filter is straightforward and fairly
static. However, when filtering is to be per-
formed for each individual IP address, manage-
ment costs rise. Static configuration of the
bindings is cumbersome and prevents layer 2 host
mobility (i.e., prevents hosts from continuing
communication after changing the point to which
they attach to the layer 2 infrastructure). An
alternative would be to define new protocols to
allow nodes to prove address ownership them-
selves, but this would imply changing the end
nodes and would certainly limit the deployment
of such a solution. Finally, the traffic being
exchanged by the nodes could be monitored and
used to infer address ownership. For example,
the underlying layer 2 infrastructure could
inspect the DHCP messages to learn which
addresses are assigned to which nodes, and pre-
vent nodes using other binding anchors (for
example, connected to other ports) from using
the addresses illegitimately. Note that the extent
to which address ownership can be successfully
inferred largely depends on the method used for
configuring addresses in nodes. In particular, if
there is no central authority to assign addresses,
as occurs in IPv6 auto-configured addresses, a
specific mechanism should be devised to allow
the filtering device to determine which of the
nodes trying to use the same address should be
granted communication.
The SAVI solution relies on traffic monitor-

ing to prove address ownership. Three solutions
for source address validation (being referred to
as SAVI solutions) have been produced, each one
tailored to a specific address configuration
mechanism. The first solution, DHCP SAVI [3],
inspects DHCP and DHCPv6 messages to
deduce which addresses are assigned to which
nodes. The second solution, FCFS (First-Come,
First-Served) SAVI [4], is aimed at nodes locally
configuring IPv6 addresses, using for example
the Stateless Address Autoconfiguration mecha-
nism [5]. Finally, SEND SAVI [6] benefits from
the ability of nodes already implementing SEND
(Secure Neighbor Discovery protocol, [7]) to
prove address ownership by means of crypto-
graphic addresses and router certificates.

SAVI ARCHITECTURE
SAVI prevents IP source address spoofing by fil-
tering out packets for which a SAVI binding does
not exist. A SAVI binding is an association
between an IP address and a binding anchor, a
property of the host’s network attachment, such
as the physical port of the SAVI device to which
the host connects. The binding anchor must be
verifiable and hard to spoof. The current SAVI
specifications consider the host’s attachment
port as the binding anchor. In this case, packets
with a given IP source address are forwarded
only when arriving from a particular physical
port. However, SAVI specifications are flexible
enough to support other binding anchors, such
as IEEE 802.1X security associations [8].
We can identify two main architectural com-

ponents of SAVI, the binding creation mecha-
nism and the filtering mechanism. SAVI bindings
are created dynamically as a result of the traffic
inspection process, according to the address con-
figuration mechanism used in the link. Each
SAVI solution defines its own rules for the cre-
ation and refreshing of bindings. The filtering
mechanism inspects data packets and verifies
their source address and anchors against the
existing list of bindings. The address configura-
tion messages used to create the bindings are
processed according to special filtering rules, as
we describe in detail for each particular SAVI
solution. Note that the filtering and binding cre-
ation processes are essentially orthogonal. In this
section we describe the filtering mechanisms that
are common for the different means to create
bindings. Binding creation is described in the
following sections.
Ideally, SAVI functionality should be

deployed as close to the end hosts as possible
(e.g., in the link layer switches). This is so
because while SAVI filtering can be performed
in any packet forwarding device in the same link
as the hosts, the protection is more effective if
SAVI filtering is performed close to the end
hosts so that all the traffic is validated. In addi-
tion, when the port is used as the binding anchor,
optimal protection is achieved by having only
one node connecting to one port of the device
performing SAVI filtering (hereafter SAVI
device). However, in real-life deployments it may
be infeasible to enable SAVI functionality in
every switch of the network. In this case SAVI
can be deployed in a switch higher in the hierar-
chy, still providing some protection.
In a link we usually find hosts and routers.

Both hosts and routers generate packets with
their own addresses as the source address.
Routers, in addition, forward packets coming
from other links. SAVI devices validate source
addresses local to the link and also prevent hosts
from generating packets with off-link addresses.
In order to achieve that, SAVI defines two types
of ports, Validating ports and Trusted ports. Vali-
dating ports are ports where filtering is per-
formed by verifying the source addresses of
packets coming through these ports against an
existing binding. Trusted ports are ports in which
validation is not performed. Hosts should be
connected to Validating ports, and routers
should be connected to Trusted ports, allowing
the packets with off-link source addresses to be
forwarded by routers and not by hosts. Failing to
do the former would result in the SAVI device
discarding off-link traffic, and failing to do the
latter would imply that malicious hosts could
generate packets with spoofed source addresses.
It is common that current links connect many

switches in order to accommodate a large num-
ber of hosts. The deployment of SAVI in scenar-
ios composed of many switches presents
scalability challenges in terms of both memory
and processing. Large memory requirements for
SAVI devices result from the need to store the
binding information. In addition, processing
requirements spring from the need to create and
maintain the binding information for the large
number of connected nodes, and validate the
source address of the many packets exchanged

A SAVI binding is an

association between

an IP address and a

binding anchor,

a property of the

host’s network

attachment, such as

the physical port of

the SAVI device to

which the host

connects. The bind-

ing anchor must be

verifiable and hard

to spoof.

IEEE Communications Magazine • April 20134

among them. In order to reduce the number of
packets each switch must validate and the state
required for this operation, the SAVI architec-
ture supports the configuration of a protection
perimeter [9]. The protection perimeter divides
the link into trusted and non-trusted zones. The
ports of the SAVI devices that are connected to
a trusted zone are configured as Trusted ports,
because they connect to trustworthy devices,
such as other SAVI switches or routers. The
ports connecting to a non-trusted zone are con-
figured as Validating ports. In particular, ports
connecting to hosts are configured as Validating
ports. The performance gain of deploying a pro-
tection perimeter results from checking the
validity of each packet only when it ingresses
into the protection perimeter. An example of the
configuration of the SAVI protection perimeter
is depicted in Fig. 1.

DHCP SAVI
The Dynamic Host Configuration Protocol (for
either IPv4 [10] or IPv6 [11]) defines a mecha-
nism for configuring IP addresses to hosts. Typi-
cal operation for DHCP for IPv4 occurs as
follows: a node broadcasts a DHCPDISCOVER
message (with the unspecified IP source address)
to request addresses from DHCP servers. One
or more servers respond with a DHCPOFFER
message, which includes possible address(es) to
configure. The node selects one of these address
offers and broadcasts a DHCPREQUEST mes-
sage, which is acknowledged by the correspond-
ing server with a DHCPACK message.
Address assignment for DHCPv6 proceeds

with slight variations: after auto-configuring a
Link-Local address, the node issues a Router
Solicitation message to discover routers in the
link and receive other configuration data. If the
link is intended to use DHCPv6 for address con-
figuration, the router responds with a Router
Advertisement message with the M (managed
address configuration) flag set [12]. With the
Link-Local address as source address and the
All_DHCP_Relay_Agents_and_Servers multicast
address as destination, the node issues a
DHCPv6 SOLICIT message to discover the
available servers. This message is answered with
an ADVERTISE message in which the

address(es) to configure are included. The node
chooses one of the responding servers, and
issues a REQUEST message including the
address and other parameters selected for con-
figuration. The selection is confirmed by the
server by means of a REPLY message. A Rapid
Commit option can be included in a DHCPv6
SOLICIT message in order to request a REPLY
message directly from the server, thus reducing
the exchange from four to two messages.
DHCP SAVI [3] relies on the ability of prop-

erly placed SAVI devices to monitor the DHCP
message exchanges in order to infer address
ownership. DHCP SAVI devices create a bind-
ing between the IP address granted by the
DHCP server and the binding anchor used by
the node to make the request. In particular,
DHCP SAVI devices snoop IPv4’s DHCPRE-
QUEST, IPv6’s REQUEST, or IPv6’s SOLICIT
with Rapid Commit option messages to identify
the binding anchor of the sending node and
obtain the IP address associated with the node
from the inspection of the DHCPACK (IPv4) or
REPLY (IPv6) messages. The lease time includ-
ed in the server response is used to configure
the Expiration timer associated with the SAVI
state for the IP address. DHCP messages are
also monitored to refresh or remove existing
bindings.
Figure 2 illustrates the creation of a binding

for DHCPv4 SAVI. Node N broadcasts a
DHCPDISCOVER message (Fig. 2a). DHCP
servers receive the message and respond to it. In
Fig. 2b, node N selects server S1, and issues a
DHCPREQUEST message. Upon reception of
this message, SAVI switch B1 creates a tempo-
rary entry in the binding database associated
with a Maximum DHCP Response timer. This
entry is moved to forwarding state when switch
B1 snoops the DHCPACK message sent by serv-
er S1 (Fig. 2c).
In Fig. 3 we illustrate the creation of a bind-

ing for DHCPv6 SAVI. After configuring a Link-
Local address, node N generates a Router
Solicitation message, which is responded to by a
router with the indication to perform DHCPv6
address configuration. Node N initiates a two-
message Rapid Commit exchange (Fig. 3b), trig-
gering the creation of a temporary state in the
binding database of B1. The message is respond-
ed to by the DHCPv6 Relay, after communicat-
ing with server S, with a REPLY message that
makes B1 change the entry state to forwarding.

FCFS SAVI FOR
IPV6 SLAAC NODES

Stateless Address Autoconfiguration (SLAAC
for short) [5] defines a mechanism by which a
node can locally generate IPv6 addresses and
check the uniqueness of these addresses. To gen-
erate the IPv6 addresses, interface identifiers are
derived from permanent configuration of the
link layer interface, such as the MAC address. In
the case of global addresses, the prefix is
obtained from Router Advertisement messages
generated by local routers.
When configuring an IPv6 address, a node N

executes the Duplicate Address Detection

Figure 1. Example of the deployment of a protection perimeter for SAVI.

Trusted port
Validating port

RouterSAVI enforcement
perimeter for link 1

SAVI enforcement
perimeter for link 2

Filtering rules for
external traffic

SAVI switch

SAVI switchSAVI switch

SAVI switch Legacy switch

Legacy switch

IEEE Communications Magazine • April 2013 5

(DAD) procedure [5] to verify that the address
is not in use by any other node in the link. To do
so, it issues a Neighbor Solicitation message
(hereafter DAD_NS) to the Solicited Node mul-
ticast address corresponding to the address being
configured. If another node L is already using
the address, L must have joined the Solicited
Node multicast group, so it receives the
DAD_NS message. Upon reception of this mes-
sage, L responds with a Neighbor Advertisement
(DAD_NA) message, and node N receiving the
message does not configure the address. If no
other node is using the address, no response is
obtained, and after some period of time the
address is configured in node N. Until the pro-
cess completes, the address is said to be in tenta-
tive state.
SLAAC is used by nodes for which changing

its address each time they attach to the network
is not an issue (e.g., a host running client appli-
cations). For these nodes, it is not so relevant to
preserve their addresses over a long period of
time, but to avoid the temporal coincidence of
two nodes using the same address. Then the
SAVI solution for SLAAC should ensure that as
long as node N is using an address, no other
node can use it. If node N releases the address
and stops using it for some time, it is acceptable
to allow another node, M, to use it. If node N
tries to configure the address again, the DAD
procedure will indicate that node M is using it,
and N should configure a different address to
regain connectivity. In summary, SLAAC address
ownership is based on the “first come, first
served” (FCFS) paradigm, where the first node
that claims an address is the node that config-
ures it.
FCFS SAVI enforces FCFS address owner-

ship by inspecting the traffic generated by the
nodes, as illustrated in Fig. 4. When node N is
configuring address A, it verifies if another node
has the same address already configured by gen-
erating a DAD_NS message [5]. A SAVI switch
B1 that receives the DAD_NS message for
address A through a Validating port and does
not have a previous binding for this address
checks if a binding exists for the requested
address in another switch. To do so, B1 creates a
tentative entry for A in its binding database
associated with a Tentative State timer,2 and for-
wards the DAD_NS message to the neighboring
switches. The switches receiving this message,
such as B2 and B3, proceed in the same way:
forward the message to other neighboring switch-
es and to any Validating port that is included as
a binding anchor for address A. If there are no
hosts with address A configured, no response
arrives before the Tentative State timer at B1
expires (Fig. 4b). In this case a VALID binding
to address A is created at B1 for the port
through which N attaches.
However, if another host in the link has

address A configured, and its closer SAVI switch
has a binding for A, this host answers to the
received DAD_NS message with a DAD_NA
message. This case is depicted in Fig. 5. Note
that only nodes for which a binding existed pre-
viously for A receive the DAD_NS message, pre-
venting rogue nodes from hindering address
configuration in legitimate nodes (i.e., host M is

the only host of the network receiving the
DAD_NS message). When B1 receives the
DAD_NA, it realizes that a binding already
exists for A, and the local binding is not created.
B1 forwards the DAD_NA message to the Vali-
dating port through which the DAD_NS was
received so that host N is signaled about the
address collision and can configure a different
address.
Since the DAD procedure is inherently unre-

liable, FCFS SAVI design must be robust to the
loss of the DAD messages used to create the
bindings and to synchronize the SAVI devices
within a realm. Thus, if DAD_NS messages are
lost before reaching the first SAVI device in the
path, or a node starts sending data packets with-
out previously performing the DAD procedure,
the SAVI device receiving the data packets syn-
thesizes a DAD_NS message on behalf of the
node to request information about the existence

Figure 2. Example of DHCP SAVI operation.

B1

B2

N
6

7

DHCPACK (s1, IP1)

4 DHCPREQUEST (s1)

B1 processes DHCPACK
message and moves
entry to forwarding
state

B3

DHCP server S1

(c)

(b)

(a)

DHCP server S2

Binding database
IP1 -> port #1, BOUND
...

2 DHCPOFFER (s1, IP1)

3 DHCPOFFER (s2, IP2)

B1

B2

N

5 B1 creates
temporary entry
and starts Max
DHCP Response
timer

B3

DHCP server S1

DHCP server S2

Binding database
? -> port #1, INIT_BIND
..

1 DHCPDISCOVER

B1

B2

N

B3

DHCP server S1

DHCP server S2

2 The value of the Tenta-
tive State timer is related
to the default value of the
time specified for the IPv6
hosts to complete the
DAD operation.

IEEE Communications Magazine • April 20136

of bindings in other ports or devices. If no
response is received, a binding is created for the
node.
We summarize the decision process of a

SAVI switch upon reception of a packet received
through a Validating port in the flowchart
depicted in Fig. 6.
Valid bindings have an associated Binding

Lifetime timer with a value similar to the expira-
tion time of the filtering database entries of the
switches where layer 2 forwarding information is
stored. The SAVI device resets the Binding Life-
time timer when data packets are received from
the rightful owner, and explicitly issues a
DAD_NS to the currently registered owner of
the address when the Binding Lifetime timer
expires, to confirm the binding validity.
Layer 2 host mobility is supported by FCFS

SAVI without any additional modification. If a
node changes the attachment point from port P
to port Q, it issues a DAD_NS message from
port Q to start the DAD process again, as
required by [5]. The message is forwarded to
port P, but no host answers the request, so the
node configures the address, the binding at Q is
configured, and the binding at P is removed.
FCFS SAVI devices learn the prefixes associ-

ated with local traffic (i.e., the valid prefixes for
hosts connecting to Validating ports) either by
inspecting Router Advertisement messages

Figure 3. Example of DHCPv6 SAVI operation.

B3

B2

B1

N

(a)

Router IPv6

DHCPv6
relay R

DHCPv6
server S

1 Router solicitation

2 Router advertisement
(M=1)

B3

B2

B1

N

(b)

Router IPv6

DHCPv6
relay R

DHCPv6
server S

6 REPLY (s2, IP)

4 B1 creates temporary
entry and starts max
DHCP response timer

3 SOLICIT with rapid
commit option

5 Communication
between relay
and server

Binding database
? -> port #1, INIT_BIND
...

Figure 4. Example of the successful creation of a SAVI binding in FCFS SAVI.

N

B3

B2

B1

(a)

2 B1 creates temporary
entry for A and starts
Tentative State timer

3 B1 forwards DAD_NS(A)

to other switches
1 N generatesDAD_NS(A)

Binding database
A -> port #1, TENTATIVE
...

N

B3

B2

B1

(b)

4 Tentative State timer
associated with A expires, entry
changes to forwarding state

Binding database
A -> port #1, VALID
...

IEEE Communications Magazine • April 2013 7

received through Trusted ports or as a result of
manual configuration.

SEND SAVI
Secure neighbor discovery (SEND) [7] defines
security extensions to IPv6 neighbor discovery
(ND) operation to allow nodes to provide
integrity, authentication, and authorization for
the ND message exchange. Router authorization
relies on certification paths with trust anchors
that must be configured in every node of the
link. In addition, SEND allows proving address
ownership for hosts with locally generated
addresses. To do so, hosts are required to create
a private/public key pair and to generate a spe-
cial type of IPv6 address called a cryptographi-
cally generated address (CGA) by including the
result of a hash of their public key in the lower
64 bits of the address. Then they use the private
key associated with the CGA to sign the ND
messages. The public key associated with the
CGA is also included in the SEND-specific
information of the ND message. A node receiv-
ing a SEND message first checks that the public
key is associated with the CGA, and then checks
that the signature was made with the private key
associated with the CGA. Therefore, the ability
to sign ND messages is bounded to a particular
IPv6 address, so the validation of an ND mes-
sage also results in proving the ownership of the
CGA. An attacker willing to impersonate a legit-
imate node using SEND needs to generate a
public/private key pair with a hash of the public
key matching the CGA of the target, which is
computationally infeasible.
SEND SAVI benefits from the ability of

SEND nodes to prove address ownership. A
SEND SAVI device inspects and validates secure
DAD_NS and DAD_NA messages to determine
if the nodes involved in the exchange are autho-
rized to use and configure the addresses. To
refresh the binding and determine if a node
sending data packets owns an address, secure NS
messages are generated by the SEND SAVI
device and sent through the Validating port to
which the node using the address was attached.
According to the Neighbor Unreachability [12]
specification, hosts must answer with an NA

message, which will be secured by SEND.
Secure Router Advertisement messages are

used by SEND SAVI devices to determine the
on-link prefixes and the routers that are allowed
to inject off-link traffic.

COMPARISON OF SAVI SOLUTIONS
In this section we compare the three SAVI solu-
tions in terms of functionality and complexity.
We summarize the analysis in Table 1.
Each of the SAVI solutions supports a set of

address configuration mechanisms. DHCP SAVI
supports both IPv4 and IPv6 addresses config-
ured through DHCP and DHCPv6 respectively.
FCFS SAVI supports IPv6 addresses, configured
through Stateless Address Autoconfiguration,
DHCPv6 or manually. This is so because all IPv6
addresses, irrespective of the mechanism through
which they are configured, should perform the
DAD procedure, enabling FCFS SAVI opera-
tion. SEND SAVI supports only IPv6 addresses
that have been generated cryptographically,
either via SAAC or manually. Different prefixes
in the same link may be protected by different
mechanisms; for example, Link-Local addresses
may be protected by FCFS SAVI, while global
addresses may be configured by DHCP, and
therefore could be protected by DHCP SAVI.
Using different mechanisms for the same prefix
over the same link is currently being discussed
[13] and is beyond the scope of this article.
The three SAVI solutions differ in the trust

model considered. For DHCP SAVI, bindings
are only created if the DHCP server explicitly
authorizes it through the address assignment
message exchange, resulting in a centralized
trust model. In the FCFS SAVI case, bindings
are created for a node as regular address config-
uration occurs, unless any other node defends
the address of the binding, resulting in a dis-
tributed trust model. Finally, SEND SAVI oper-
ation relies on the ability of the nodes to
generate messages that can be validated by the
SAVI device according to the cryptographic key
associated with the address.
The different solutions also differ in terms of

address persistence protection. DHCP SAVI and
SEND SAVI guarantee address persistence,

Figure 5. Example of protection provided against address duplication in FCFS SAVI.

N M

B3

B2

B1

2 B1 creates temporary
entry for A and starts
Tentative State timer

6 B1 removes entry in
the binding database.
Forwards DAD_NA(A)
to port #3

1 N generatesDAD_NS(A)
4 B1 forwards DAD_NS(A)

through Validating port

with binding to A

5 M generates

DAD_NA(A)

3 B1 forwards DAD_NS(A)

to other switches

Binding database
A -> port #1, TENTATIVE
...

Binding database
A -> port #2, VALID
...

Different prefixes in

the same link may

be protected by dif-

ferent mechanisms;

for example,

Link-Local addresses

may be protected by

FCFS SAVI, while

global addresses may

be configured by

DHCP, and therefore

could be protected

by DHCP SAVI.

IEEE Communications Magazine • April 20138

while FCFS SAVI does not. In the case of FCFS
SAVI, as soon as the node stops defending an
address (i.e., it stops answering the NS messages
for a given address), FCFS SAVI will allow any
other node to use that address. This is not the
case for either DHCP SAVI or SEND SAVI. In
the case of DHCP SAVI, the SAVI device hon-
ors the address assignments made by the DHCP
server, so until the DHCP server does not allo-
cate the address to another node, the address

remains blocked. In the case of SEND SAVI,
the protection provided by the cryptographic val-
idation mechanism makes it infeasible for a
node to use the address of another.
Finally, we discuss the number of messages

the SAVI device needs to inspect, which is an
indicator of the complexity of the solution.
DHCP SAVI needs to inspect the DAD mes-
sages, the Router Advertisement, and many
DHCP messages, while FCFS SAVI only needs
to inspect the DAD messages and Router Adver-
tisement messages. SEND SAVI needs to inspect
the Secure Neighbor Discovery messages, but in
addition, it needs to perform the crypto verifica-
tion for them.

CONCLUSIONS
We have presented the SAVI framework for
preventing source address spoofing within a link.
The work to develop this set of specifications
started at the IETF in 2008. So far, the docu-
ment describing FCFS SAVI has been published
as a Standards track RFC, the document describ-
ing DHCP SAVI is in the last stage of the stan-
dardization process (i.e., IESG review), and the
SEND SAVI document has completed the
Working Group last call.
Currently, there are commercial products that

perform packet filtering within the link, with
manually configured bindings or bindings derived
from DHCP inspection.3 Due to the modular
architecture defined for SAVI, which separates
filtering and binding creation, it is possible to
leverage on existing implementations to develop
SAVI-compliant filtering devices.
The standardization of the SAVI solutions

will enable interoperability among the devices of

Figure 6. Flowchart showing the decision process of an FCFS SAVI switch upon reception of a packet
through a Validating port.

Does binding
for A exist?

Packet P with source
address A received from

binding anchor B

DAD_NA
received before
Tentative State
timer expired?

Send DAD_NS to other
bridges, start Tentative

State timer

Create binding for A,
possibly forward packet P

Is B the current
binding anchor for

A (Bc)?

Forward packet P

Yes

Yes

Yes

Yes

No

No

No

No

Discard packet P

Discard packet P

Send DAD_NS to Bc and
to other bridges, start
Tentative State timer

DAD_NA received
from Bc before
Tentative State
timer expired?

Forward DAD_NA to B,
discard packet P

3 For example, this is sup-
ported by the IP Source
Guard feature in Cisco
and Juniper switches.

Table 1. Comparison of SAVI solutions.

DHCP SAVI FCFS SAVI SEND SAVI

Address family IPv4, IPv6 IPv6 IPv6

Address
configuration
method

DHCP SLAAC, DHCP,
Manual

SLAAC,
Manual

Trust model Centralized Distributed Cryptographic

Address persistence DHCP based No Crypto-based

Messages involved

NS, NA, RA,
DHCPREQUEST,
DHCPACK,
DHCPDECLINE,
DHCPRELEASE,
DHCPLEASEQUERY
DHCPv6 REQUEST,
DHCPv6 SOLICIT
DHCPv6 REBIND,
DHCPv6 REPLY,
DHCPv6 LEASE

NS, NA, RA
Secure NS,
Secure NA,
Secure RA

IEEE Communications Magazine • April 2013 9

different vendors, and the support of the new
authorization models defined by FCFS and
SEND.

ACKNOWLEDGMENTS
This article has received funding from Comu-
nidad de Madrid, Spain, under the MEDIANET
project (S2009/TIC-1468).

REFERENCES
[1] D. McPherson, F. Baker, and J. Halpern, “SAVI Threat

Scope,” draft-ietf-savi-threat-scope-05, Apr. 2011.
[2] P. Ferguson and D. Senie, “Network Ingress Filtering:

Defeating Denial of Service Attacks Which Employ IP
Source Address Spoofing,” IETF RFC 2827, May 2000.

[3] J. Bi et al., “SAVI Solution for DHCP,” draft-ietf-savi-
dhcp-15, Sept. 2012.

[4] E. Nordmark, M. Bagnulo, and E. Levy-Abegnoli, “FCFS
SAVI: First-Come First-Served Source Address Validation
Improvement for Locally Assigned IPv6 Addresses,” IETF
RFC 6620, May 2012.

[5] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless
Address Autoconfiguration,” IETF RFC 4862, Sept. 2007.

[6] M. Bagnulo and A. Garcia-Martinez, “SEND-Based
Source-Address Validation Implementation,” draft-ietf-
savi-send-08. Sept. 2012.

[7] J. Arkko et al., “Secure Neighbor Discovery (SEND),”
IETF RFC 3971, Mar. 2005.

[8] IEEE, “IEEE 802.1X-2010 Port-Based Network Access
Control,” Feb. 2010.

[9] J. Wu et al., “Source Address Validation Improvement
Framework,” draft-ietf-savi-framework-06, Dec. 2011.

[10] R. Droms. “Dynamic Host Configuration Protocol,” IETF
RFC 2131, Mar. 1997.

[11] R. Droms et al., “Dynamic Host Configuration Protocol
for IPv6 (DHCPv6),” IETF RFC 3315, July 2003.

[12] T. Narten et al., “Neighbor Discovery for IP Version 6
(IPv6),” IETF RFC 4861, Sept. 2007.

[13] J. Bi et al., “SAVI for Mixed Address Assignment Meth-
ods Scenario,” draft-ietf-savi-mix-03, Nov. 2012.

BIOGRAPHIES
MARCELO BAGNULO (marcelo@it.uc3m.es) received an electri-
cal engineering degree in 1999 from the University of
Uruguay and a Ph.D. in telecommunications in 2005 from
the University Carlos III of Madrid (UC3M), Spain. In 2000
he joined UC3M, where he has been an associate professor
since 2006. He has published several papers in technical
journals, magazines, and conferences. His main interest
areas are IPv6 and interdomain routing.

ALBERTO GARCÍA-MARTÍNEZ (alberto@it.uc3m.es) received a
telecommunications engineering degree in 1995 and a
Ph.D. in telecommunications in 1999, both from the Poly-
technic University of Madrid, Spain. In 1998 he joined
UC3M, where he has been an associate professor since
2001. His main research areas are IPv6 and routing.

