
Abstract—It is clear that there is not enough time to upgrade

existing Internet hosts to dual stack before the IPv4 address pool

depletes. This implies that the IPv6 transition and co-existence

must support interaction between IPv4 nodes and IPv6 nodes. In

this paper we describe NAT64 and DNS64, a tool suite that

provides a way forward in the IPv4-to-IPv6 transition by

allowing communication among unmodified IPv6 and IPv4

nodes.

Index Terms—IPv6 transition, NAT64, DNS64.

I. INTRODUCTION

IN the early 1990s it became apparent that the 32-bit address

size of the IPv4 protocol would be too small in the long run,

so the IETF started to produce an updated version of IP with

larger addresses, IPv6. Unfortunately, the resulting protocol

is not backward compatible with IPv4, so there is a need for

tools to allow the transition and coexistence of the two

protocols. There are three main transition mechanisms

between the existing IPv4 and the new IPv6: tunneling, dual

stack and translation. Tunneling entails encapsulating an IPv6

packet inside an IPv4 packet to communicate IPv6 nodes

across IPv4-only paths. Dual stack means running both IPv4

and IPv6 at the same time in endpoints (i.e. having dual stack

operating systems and applications in upgraded nodes) and in

the network (i.e. having dual stack network equipment, and

configuring both types of addresses for new networks). Dual

stack was conceived to introduce IPv6 without resigning from

IPv4 until all hosts transitioned and IPv4 could be removed

without disruption. However, this transition strategy is no

longer viable, as the IANA IPv4 address pool was depleted

on February 3
rd

 of 2011
1
 and currently less than 10% of the

Internet hosts are IPv6 enabled
2
. The result is that there is no

more time to migrate the current IPv4-only host base to dual

stack before IPv6-only hosts are deployed. This implies the

need in the short to medium term for the translation of

packets between IPv4-only hosts and IPv6-only hosts to

support communication between IPv4-only hosts and IPv6-

only hosts.

 Stateless IP and ICMP translation (SIIT) [1] and Network

Address Translation – Protocol Translation (NAT-PT) [2]

specified how to translate between IPv4 and IPv6. SIIT

specifies stateless translation, which happens on a per-packet

1
 http://www.nro.net/news/ipv4-free-pool-depleted

2
 http://www.ipv6matrix.org/

basis without the need of any state. The limitation of stateless

translation is the need of a one-to-one mapping between IPv4

and IPv6 addresses. Therefore, the number of IPv6 hosts that

can be served by a translator is limited to the number of IPv4

addresses available to the translation service.

NAT-PT provided a stateful mechanism for address

translation in which a single IPv4 address could be used to

map multiple IPv6 hosts. In order to map the IPv4 destination

address back to the correct IPv6 destination address in the

IPv4-to-IPv6 direction, the NAT-PT translator maintained

temporary state in a translation table. This procedure is

similar to the Network Address Translation (NAT) that is

popular in IPv4 networks. Due to the larger address space of

IPv6 it is easy to initiate communications in this realm to the

IPv4 side by embodying the IPv4 destination address into an

IPv6 prefix. However, to enable communications initiated in

the IPv4 side, a complex setup involving synchronization

between a DNS Application Level Gateway (DNS-ALG) and

a Bi-Directional-NAT-PT was required. In 2007 the NAT-PT

specification was moved to “Historic” status within the IETF

after identifying problematic interactions with other aspects

of IPv6 operation that resulted in reduced functionality and

reliability of the network [3].

NAT64/DNS64 [4] [5] is a tool suite aimed to replace

NAT-PT in a manner that addresses most of the concerns that

led to its deprecation. NAT64 translates IPv4 packets into

IPv6 packets and vice versa in a stateful manner and DNS64

synthesizes AAAA resource records for IPv4 hosts that only

have A resource records available. A key design decision for

NAT64/DNS64 is to explicitly manage only communications

initiated from the IPv6 side, while relying in existent NAT-

traversal techniques, such as STUN [6], to support

communications initiated by the IPv4 side. To do so, NAT64

is designed to conform to the requirements and

recommendations for translators defined by the IETF

BEHAVE working group, thus resulting in an homogeneous

behavior of NAT64 implementations. DNS64 provides

similar functionality as the NAT-PT DNS-ALG, but

implemented as a new architectural block instead of being

performed as a transparent ALG. A consequence of this

design is the ability of DNS64 to maintain compatibility with

most modes of DNSSEC. Like NAT-PT, NAT64 and DNS64

are compatible with, and largely transparent to, unmodified

IPv6 hosts.

This paper is organized as follows: In section II, we

discuss the requirements upon which NAT64 and DNS64 are

The NAT64/DNS64 tool suite for IPv6 transition

 Marcelo Bagnulo Alberto García-Martínez Iljitsch van Beijnum

 Universidad Carlos III de Madrid Universidad Carlos III de Madrid Institute IMDEA Networks and

 Universidad Carlos III de Madrid

 marcelo@it.uc3m.es alberto@it.uc3m.es iljitsch.vanbeijnum@imdea.org

 2

based. Section III and IV describes NAT64 and DNS64

operation respectively. Section V presents a walkthrough that

illustrates the behavior of NAT64 and DNS64. Finally,

section VI presents our conclusions.

II. REQUIREMENTS FOR IPV6-IPV4 TRANSLATION

The Network Address Translation (NAT) technology for

IPv4 was initially defined by the IETF in RFC 1631 [7]. This

document described the overall functioning of a NAT, but

lacked of the detailed specification that would guarantee an

homogeneous behavior of NAT devices produced by

different vendors. The IETF was reluctant to specify the NAT

behavior in greater detail, since NAT was deemed an inferior

technology that would negatively affect the Internet

architecture [8]. This approach resulted in a myriad of

different NAT implementations that behaved in different

ways with respect to state creation and management [9]. The

actual properties of a communication through a NAT box,

such as how the address/port pool was managed or the

lifetime of the address translation state, were hard to predict

for the applications. In particular, it became cumbersome for

the applications running in the private realm to set and

preserve the appropriate state in the NAT to enable

communications initiated from the outside. To mitigate this

phenomenon, the BEHAVE WG of the IETF defined a set of

behavioral requirements for IPv4 NATs covering its

interaction with TCP [10], UDP [11] and ICMP [12].

Similarly to the initial NAT RFC, the NAT-PT

specification failed to define the behavior of the IPv4-IPv6

stateful translator in detail. To guarantee homogenous

behavior of IPv4-IPv6 translators, a set of requirements for

IPv6-IPv4 translation, analogous to the existing IPv4-IPv4

requirements, should be stated. In order to do that, we take as

a starting point the requirements defined for IPv4 NATs. It is

straightforward to transpose some of these requirements to

the NAT64 context, such as minimum binding lifetime, port

assignment strategies, handling of fragmented packets, etc.

However, some other requirements are essential for the NAT

architecture and deserve a more careful analysis for its

application to the NAT64 case, which is presented next.

To understand NAT operation it is relevant to distinguish

between the mapping behavior and the filtering behavior. In

general terms, an IPv4 NAT is a device connecting two

realms of IPv4 addressing, one that uses private addresses

and another realm which usually is the public Internet. Upon

the reception of a packet coming from the private realm, the

NAT creates a mapping between the source address and

source port pair of the received packet and a public address

and port pair available in its own pool. We will refer to an

address/port pair as a transport address. The NAT then

substitutes the source transport address of the packet with the

one assigned in the binding, and forwards the packet to the

public realm. The mapping behavior defines how the

aforementioned binding is created. Three types of mapping

behavior are defined:

- Endpoint independent mapping (Fig. 1): The mapping

is solely determined by the transport address of the

internal host. Packets containing the same private

transport address are translated to the same transport

address of the NAT’s pool irrespectively of their

public address and/or port.

- Address dependent mapping: The mapping is

determined by the transport address of the internal

host and the address of the external host. Packets

containing the same private transport address and the

same public address are translated to the same

transport address of the NAT’s pool irrespectively of

the port used by the external host.

- Address and port dependent mapping: The mapping is

determined by the transport address of the internal

host and the transport address of the external host.

192.0.2.7

198.51.100.10

203.0.113.11

Source: 192.0.2.7: 15000

Dest: 198.51.100.10: 80

Source: 192.0.2.7: 15000

Dest: 198.51.100.10: 8080

Source: 70.0.20.3: 13000

Dest: 198.51.100.10: 80

70.0.20.0/28

Source: 70.0.20.3: 13000

Dest: 203.0.113.11: 8080

192.0.2.7: 15000 70.0.20.3:13000

Figure 1. Endpoint independent mapping.

The different types of mappings determine how internal

hosts are perceived by external hosts. Different connections

initiated by the same process running in a host behind a NAT

that uses endpoint independent mappings are presented with

the same transport address to external hosts. This is needed

by optimized NAT traversal techniques such as STUN [6]

and TURN [13]. Both TCP and UDP requirements for NAT

operation mandate the use of endpoint independent mappings.

However, this does not imply that a NAT box is required to

forward all packets, as filtering rules can apply to comply

with security policies. When a NAT box receives a packet

through any of its interfaces, it applies the filtering rules to

determine whether to forward the packet or to discard it,

based on the address and/or port information. The following

filtering behaviors are defined:

- Endpoint independent filtering: The filtering rules

only depend on the transport address of the internal

host. This means that packets are forwarded or

dropped solely based on the transport address of the

 3

internal host (either the private one or the one from the

NAT’s pool assigned through the mapping)

- Address dependent filtering: The filtering rules depend

on the transport address of the internal host and also

on the IP address of the external host.

- Address and port dependent filtering: the filtering

rules depend on the transport address of the internal

host as well as on the transport address of the external

host.

The recommendation is for NATs to implement endpoint

independent filtering, and if more security is needed, to allow

the use of address dependent filtering. While the former type

of filtering is compatible with most NAT traversal techniques

(including both STUN and TURN), the latter type of filtering

is compatible with a reduced set of techniques (supporting

TURN but not STUN).

To extend these requirements to the NAT64 case, we need

to map the roles of IPv4 and IPv6 address to the roles of

private and public addresses in IPv4 NATs. Since a mapping

can only be created when the translator receives a packet

from the IPv6 realm, it is straightforward to map the IPv6

realm in NAT64 to the private realm in IPv4 NATs, and the

IPv4 realm in NAT64 to the public realm in IPv4 NATs. The

close similarities among the IPv4 NAT and the NAT64

setups allow deriving immediately the mapping and filtering

requirements for NAT64, by stating that endpoint

independent mappings, and both endpoint independent and

address dependent filtering, must be supported.

III. NAT64

NAT64 translates IPv6 packets into IPv4 packets and vice-

versa. It has essentially two components, the address

translation mechanism and the protocol translation

mechanism. The latter, which translates IP headers fields

other than the addresses, operates in a stateless manner trying

to preserve as much as possible the semantics of the original

field whenever possible. This was originally defined in [1]

and has been updated in [14].

Address translation maps IPv6 transport addresses to IPv4

transport addresses and vice-versa. In order to create these

mappings, the NAT64 box has two pools of IP addresses, an

IPv6 address pool (to represent IPv4 addresses in the IPv6

network) and an IPv4 address pool (to represent IPv6

addresses in the IPv4 network).

NAT64 creates the mappings by using an IPv6 prefix

(denoted as Pref64::/n) as the IPv6 address pool. Each

IPv4 address is mapped into a different IPv6 address by

concatenating the Pref64::/n with the IPv4 address being

mapped and, if n is less than 96, a suffix with all its bits set

to 0 [15]. Pref64::/n can be either the Well-Known

prefix defined for this purpose (64:ff9b::/96) [15] or a

local prefix manually assigned from the global unicast IPv6

address block of the site for this particular use. In both cases

the mapping is stable over time since there is no need to re-

use the IPv6 addresses, as the IPv6 address pool is large

enough. By using the Well-Known prefix, the resulting IPv6

representations of IPv4 addresses are globally meaningful.

This allows for any party in the Internet receiving such an

address to recognize it as an IPv6 representation of an IPv4

address, and even reach the IPv4 destination if a local NAT64

service is available. The use of the Well-Know prefix is

recommended in the absence of a manually configured prefix.

Fig. 2 shows an example of the representation of an IPv4

address with different IPv6 prefix types.

IPv6 derived from local prefix 2001:DB8::/96

2001:DB8:: 198.51.100.7

0 96

IPv6 derived from local prefix 2001:DB8::/32

2001:DB8: 198.51.100.7 0

0 32 64

IPv6 derived from Well-Known prefix

198.51.100.764:ff9b::

0 96

Figure 2. IPv6 address representation for 198.51.100.7.

The IPv4 address pool is normally a small prefix assigned

to the NAT64's external (IPv4) interface. Because of the size

of the IPv4 address space, the IPv4 address pool is not

sufficient to establish permanent one-to-one mappings with

IPv6 addresses. So, mappings using the IPv4 address pool are

created and released dynamically.

 An IPv6 initiator learns the IPv6 address representing the

IPv4 target either through the DNS64, as described in the

next section or by other means. Packets to that address sent

by the IPv6 host are intercepted by the NAT64 device. The

NAT64 associates an IPv4 transport address of its pool to the

IPv6 transport address of the initiator, creating a binding

state, so that reply packets can be translated and forwarded

back to the initiator. The binding state is kept while packets

are flowing. Once the flow stops, and based on a timer, the

IPv4 transport address is returned to the IPv4 address pool.

In order to implement endpoint-independent mapping and

support both endpoint-independent filtering and address-

dependent filtering, NAT64 relies in two data structures to

store mapping information, namely the Binding Information

Base (BIB) and the Session table.

The BIB stores only mapping information. Each entry of

the BIB corresponds to one transport address of an IPv6 node

and the associated IPv4 transport address from the NAT64’s

IPv4 address pool. When an IPv6 node initiates a new

communication using a source transport address that it is not

in the BIB, a new entry is created. If the IPv6 node initiates a

new communication with an IPv6 transport address for which

 4

there is a BIB entry, this entry is reused for this new

communication, irrespectively whether the destination IPv6

address or destination port are different from the one used in

the previous communications. The result is that multiple

communications involving the same IPv6 transport address

are translated by the NAT64 to the same IPv4 transport

address, resulting in endpoint-independent mapping.

The information contained in the BIB is enough to perform

the address translation of any packet and to provide endpoint-

independent filtering. However, the information contained in

the BIB is not enough to perform address-dependent filtering.

If this is required, the NAT64 needs to keep information

about the IPv4 address of the IPv4 node involved in the

communication. To support this flavor of filtering, the

NAT64 relies in an additional data structure, the Session

table, which contains the source and destination IPv6

transport address as well as the source and destination IPv4

transport address. This allows the NAT64 to verify if an IPv4

packet is addressed to an IPv4 transport address in use from

the pool, but also that it comes from an IPv4 address already

involved in a communication.

In order to comply with the requirements imposed in the

minimum lifetime of the bindings [10], [11], each Session

table entry has a lifetime, which in the case of UDP is set to 2

minutes and in the case of TCP is set to 2 hours.

It is apparent that bindings associated to TCP

communications are “expensive” in the sense that they

consume an IPv4 transport address from the reduced pool for

a long time. It then seems wise to ascertain that there is a real

TCP communication ongoing before creating the binding.

NAT64 does so by keeping track of the TCP three-way

handshake to identify TCP connection establishment before

actually creating the binding. In addition, it also keeps track

of the FIN exchange of the TCP connections to remove the

binding even if the lifetime has not expired.

IV. DNS64

DNS64 synthesizes AAAA resource records (AAAA RRs) from

A resource records (A RRs). DNS64 allows IPv6-only hosts

to use the Fully-Qualified-Domain-Name of an IPv4-only

node to initiate a communication.

When an IPv6-only node starts a communication, it

naturally queries for a AAAA RR and it expects to obtain the

IPv6 address of the target node. To allow an IPv6 initiator to

learn the address of the responder, DNS64 is used to

synthesize a AAAA record from the A record (containing the

real IPv4 address of the responder). DNS64 is designed as an

additional function of a DNS recursive resolver. As such,

when a DNS64 enabled resolver receives a AAAA RR query

generated by the IPv6 initiator, it searches for a AAAA RR. If

no AAAA record is available for the target node (which is the

normal case when the target node is an IPv4-only node),

DNS64 performs a query for the A record. If an A record is

discovered, DNS64 creates a synthetic AAAA RR by adding

the Pref64::/n of a NAT64 to the responder's IPv4

address and if n is less than 96, a suffix. The synthetic AAAA

RR is passed back to the IPv6 initiator, which starts an IPv6

communication with the IPv6 address associated to the IPv4

receiver.

The packet is routed to the NAT64 device, which creates

the IPv6-to-IPv4 address mapping as described before. It is

important to highlight that the DNS64 and the NAT64 do not

share any state. In particular, when the DNS64 generates a

synthetic response, no state is created in the NAT64. The

only information shared by the NAT64 and the DNS64 is the

Pref64::/n, which must be the same for a given domain.

By default, both NAT64 and DNS64 use the Well-Known

prefix, imposing no manual configuration to none of them.

One of the major challenges for DNS64 is the

compatibility with DNSSEC. DNSSEC defines extensions to

provide origin authentication, authenticated denial of

existence, and data integrity of the DNS data. As such, it is in

fundamental conflict with DNS64, since DNS64 synthesizes

RRs and presents them as RRs coming from another origin.

As opposed to the obsolete NAT-PT DNS-ALG, which

intercepted and modified DNS packets, DNS64 is a full-

fledged architectural component. Because of that, it is

possible to place the DNS64 functionality within the

resolution chain of the DNS to be compatible with some

modes of DNSSEC by assuring that the synthesis always

occurs after validation.

There are different configurations for a recursive resolver

involving DNSSEC. A recursive resolver can be DNSSEC-

capable or not. Moreover, a DNSSEC-capable resolver can

be validating, i.e. performing DNSSEC data validation or not,

i.e. simply passing the DNSSEC data.

Let’s next consider how a DNS64 recursive resolver

handles different types of DNSSEC queries:

 Queries arriving from a non DNSSEC-capable originator

(Fig. 3a). A DNSSEC-capable and validating DNS64

recursive resolver can validate the data of the A RR before

creating the synthetic AAAA RR.

 Queries arriving from a DNSSEC-capable but not

validating originator (Fig. 3b). This is the ideal case for

DNS64. If the DNS64 resolver is implementing DNSSEC

validation, it validates the DNSSEC data, it creates the

synthetic AAAA RR and signals back to the querying party

that the data included is authentic. This is a fairly common

case in DNSSEC deployments, where the client is not

actually performing validation but it expects the local DNS

server to do it on its behalf. Typically there is a secure

channel between the client and its server (e.g. IPsec

protection).

 Queries from a DNSSEC-capable and validating originator

(Fig. 3c). In this case, the originator asks for the DNSSEC

data to perform the validation itself. Because of that, the

 5

DNS64 recursive resolver cannot send any synthetic AAAA

RR in the response, or it would cause the validation to fail.

This case can be handled by placing the DNS64

functionality in the client itself, after the validation

module.

V. WALKTHROUGH

For this walkthrough we consider the topology described in

Fig. 4. The NAT64 uses the Well-Known prefix

64:ff9b::/96 to map IPv4 addresses into IPv6, and has

an IPv4 address T assigned to its IPv4 interface. The local

name server implements the DNS64 function and uses the

Well-Known prefix for its synthesis. IPv6 hosts only have

stub resolvers, so they request recursive lookups to the local

name server. No DNSSEC is considered.

We now describe a typical scenario in which H1 initiates a

communication with H2:

1. H1 performs a DNS lookup for the IPv6 address of H2

by sending a DNS query for a AAAA record to the local

DNS/DNS64 server.

 2. The local DNS/DNS64 server resolves the query,

discovering that there are no AAAA records for H2.

 3. The DNS/DNS64 server queries for a A record for H2,

obtaining the IPv4 address X.

 4. The DNS/DNS64 server synthesizes a AAAA record by

appending the IPv4 address X to 64:ff9b::/96, and

includes this address in the response to H1.

 5. After receiving the synthetic AAAA record, H1 sends a

packet towards H2 from a source transport address (Y', y)
4

to a destination transport address (64:ff9b:X, x), where

y and x are ports chosen by H1.

 6. The packet is routed to the IPv6 interface of the NAT64

(since 64:ff9b::/96 has been associated to this

interface), and the NAT64 performs the following actions:

 It selects an unused port t on its IPv4 address T and

creates the BIB entry (Y', y) (T, t) and a session table

entry (Y', y, 64:ff9b:X, x) (T, t, X, x)

 It translates the IPv6 header into an IPv4 header

using stateless translation.

 It includes in the packet (T, t) as source transport

address and (X, x) as destination transport address.

 The NAT64 sends the translated packet through the IPv4

network.

 7. H2 node receives the packet and responds by sending a

packet with destination transport address (T, t) and source

transport address (X, x).

 8. The packet is routed to the NAT64 box, which looks for

a Session table entry containing (T, t). When the entry is

found,

 the NAT64 translates the IPv4 header into an IPv6

header using stateless translation.

 the NAT64 includes in the packet (Y', y) as

destination transport address and (Pref64:X, x) as

source transport address.

The translated packet is finally sent out to H1.

4
 We use a prime (') to highlight that the address is IPv6.

a) Non-DNSSEC host

DNS64 +
DNSSEC local
name server

b) Non-validating
DNSSEC-capable host

c) Validating DNSSEC-
capable host

IPv4 DNSSEC
authoritative
name server

A

1. DNS AAAA Query (non-DNSSEC)
2. DNS AAAA Query (DNSSEC, checking)

3. Empty answer in DNS Response

6. DNS Response: synthesized
AAAA RR

1. DNS AAAA Query (DNSSEC, non-checking)

6. DNS Response: synthesized
AAAA RR + valid

Secured channel

4. DNS A Query (DNSSEC, checking)

5. DNS Response: A RR + DNSSEC data

2. DNS AAAA Query (DNSSEC, checking)

3. Empty answer in DNS Response

4. DNS A Query (DNSSEC, checking)

5. DNS Response: A RR + DNSSEC data

DNS64 +
DNSSEC

1. DNS AAAA Query (DNSSEC, checking)

4. Empty answer in DNS Response

5. DNS A Query (DNSSEC, checking)

8. DNS Response: A RR + DNSSEC data

2. DNS AAAA Query (DNSSEC, checking)

3. Empty answer in DNS Response

6. DNS A Query (DNSSEC, checking)

7. DNS Response: A RR + DNSSEC data

DNS64 +
DNSSEC local
name server

DNS +
DNSSEC local
name server

IPv4 DNSSEC
authoritative
name server

A

IPv4 DNSSEC
authoritative
name server

A

Figure 3. Different modes of DNS64 operation (detail of iterative DNS messages to the higher levels of the DNS

hierarchy is not included)

H1

IPv6 Network

DNS64 local
name server

Y’

NAT64

H2
T X

IPv6 Network IPv4 Network

1. DNS AAAA Query for H2

IPv4 DNSSEC
authoritative
name server

2. DNS AAAA Query for H2

2bis. Empty answer in DNS Response

3. DNS A Query for H2

3bis. DNS Response for H2= X (A RR)

4. DNS Response for H2=
64:ff9b:X (AAAA RR)

5. IPv6 [(src IP= Y’) (dst IP= 64:ff9b:X)
(src port= y) (dst port=x) data]

6. IPv4 [(src IP= T) (dst IP= X)
(src port= t) (dst port=x) data]

7. IPv4 [(src IP= X) (dst IP= T)
(src port= x) (dst port=t) data]

8. IPv6 [(src IP= 64:ff9b:X) (dst IP= Y’)
(src port= y) (dst port=x) data]

Figure 4. Walkthrough scenario (detail of iterative DNS messages to the higher levels of the DNS hierarchy is not included).

VI. CONCLUSIONS

In this paper we present the NAT64/DNS64 tool suite for

IPv6 transition. NAT64 is a network address translator and

protocol translator that allows communication between IPv6

and IPv4 nodes. DNS64 synthesizes AAAA RRs from the

information available in A RRs for a given Fully Qualified

Domain Name. This tool suite is expected to play a critical

role in the IPv6 transition in the near future. There are already

several open source and commercial implementations of the

tool suite.

The suite is designed to support several deployment

models although we expect two of them to be preeminent:

The first one is to allow the internal nodes of an IPv6-only

stub network to reach the public IPv4 Internet. In this case the

NAT64/DNS64 functions can be provided either by the IPv6

stub network itself or by its direct provider i.e. in a Carrier

Grade NAT. In the second scenario, an IPv4-only stub site

decides to give access to its IPv4-only servers to clients in the

IPv6 Internet. For this, NAT64 can be provisioned by the

IPv4 stub network. Because the DNS server of the IPv4 site is

authoritative for the local data, the DNS64 function is

replaced by a DNS server with AAAA RRs that contain the

IPv6 representation of the IP addresses assigned to the IPv4-

only servers.

As DNS64/NAT64 is a replacement for the deprecated

NAT-PT, to conclude the paper we compare NAT64/DNS64

and NAT-PT. In order to deal with the main limitations of

NAT-PT, DNS64/NAT64 design makes a few key

architectural decisions: First, the DNS64/NAT64 manages

explicitly only communications initiated from the IPv6 side.

Communications initiated from the IPv4 are supported

through standard NAT-traversal techniques, such as STUN

and TURN, since NAT64 is designed to be NAT-traversal

compatible. Second, DNS64 is a full-fledged architectural

component that is part of a DNS resolver. As such, it does not

need to transparently intercept DNS queries. The result of

these two design decisions is a more robust design, as DNS

queries and data packets do not need to flow through the

same path, significantly improving the reliability of the

resulting network. Finally, DNS64/NAT64 use by default the

Well-Known prefix that allows having a globally valid IPv6

representation of an IPv4 address. This implies that even if

the IPv6 representation of an IPv4 address or the synthetic

AAAA RR leak outside the realm of the NAT64, the receiving

node can identify the address as being an IPv6 representation

of the original IPv4 address.

REFERENCES

[1] E. Nordmark, “Stateless IP/ICMP Translation Algorithm (SIIT)”,

RFC2765, 2000.
[2] G. Tsirtsis and P. Srisuresh, “Network Address Translation - Protocol

Translation (NAT-PT)”, RFC2766, 2000.

[3] C. Aoun and E. Davies, “Reasons to Move the Network Address
Translator - Protocol Translator (NAT-PT) to Historic Status”,

RFC4966, 2007.

 7

[4] M. Bagnulo, P. Matthews, I. van Beijnum, "Stateful NAT64: Network

Address and Protocol Translation from IPv6 Clients to IPv4 Servers",
RFC-to-be 6146, July 2010.

[5] M. Bagnulo, A. Sullivan, P. Matthews, I. van Beijnum, "DNS64: DNS

extensions for Network Address Translation from IPv6 Clients to IPv4
Servers", RFC-to-be 6147, July 2010.

[6] J. Rosenberg, R. Mahy, P. Matthews, D. Wing. "Session Traversal

Utilities for NAT (STUN)". RFC5389, 2008.
[7] K. Egevang, P. Francis. "The IP Network Address Translator (NAT)".

RFC1631, 1994.

[8] T. Hain, “Architectural Implications of NAT”, RFC2993, 2000.
[9] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti and M.

Kojo, “An Experimental Study of Home Gateway Characteristics”,

ACM SIGCOMM Internet Measurement Conference (IMC),
Melbourne, Australia, November 1-3, 2010.

[10] S. Guha, Ed., K. Biswas, B. Ford, S. Sivakumar, P. Srisuresh. "NAT

Behavioral Requirements for TCP". RFC5382, 2008.
[11] F. Audet, Ed., C. Jennings. "Network Address Translation (NAT)

Behavioral Requirements for Unicast UDP". RFC4787, 2007.

[12] P. Srisuresh, B. Ford, S. Sivakumar, S. Guha. "NAT Behavioral
Requirements for ICMP". RFC5508, 2009.

[13] R. Mahy, P. Matthews, J. Rosenberg, “Traversal Using Relays around

NAT (TURN): Relay Extensions to Session Traversal Utilities for
NAT (STUN)”, RFC 5766, 2010.

[14] X. Li, C. Bao, F. Baker, "IP/ICMP Translation Algorithm", RFC-to-be

6145, 2010.
[15] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, X. Li, "IPv6

Addressing of IPv4/IPv6 Translators", RFC6052, 2010.

