
ar
X

iv
:0

90
7.

38
74

v4
 [

cs
.N

I]
 1

 F
eb

 2
01

1

Deep Diving into BitTorrent Locality

[Please cite the IEEE INFOCOM’11 version of this paper]

Ruben Cuevas
Univ. Carlos III de Madrid
rcuevas@it.uc3m.es

Nikolaos Laoutaris
Telefonica Research

nikos@tid.es

Xiaoyuan Yang
Telefonica Research

yxiao@tid.es

Georgos Siganos
Telefonica Research
georgos@tid.es

Pablo Rodriguez
Telefonica Research
pablorr@tid.es

ABSTRACT
A substantial amount of work has recently gone into local-
izing BitTorrent traffic within an ISP in order to avoid ex-
cessive and often times unnecessary transit costs. Several
architectures and systems have been proposed and the ini-
tial results from specific ISPs and a few torrents have been
encouraging. In this work we attempt to deepen and scale
our understanding of locality and its potential. Looking at
specific ISPs, we consider tens of thousands of concurrent
torrents, and thus capture ISP-wide implications that can-
not be appreciated by looking at only a handful of torrents.
Secondly, we go beyond individual case studies and present
results for the top 100 ISPs in terms of number of users rep-
resented in our dataset of up to 40K torrents involving more
than 3.9M concurrent peers and more than 20M in the course
of a day spread in 11K ASes. We develop scalable method-
ologies that permit us to process this huge dataset and an-
swer questions such as: “what is the minimum and the
maximum transit traffic reduction across hundreds of
ISPs? ”, “ what are the win-win boundaries for ISPs and
their users? ”, “ what is the maximum amount of tran-
sit traffic that can be localized without requiring fine-
grained control of inter-AS overlay connections? ”, “ what
is the impact to transit traffic from upgrades of residen-
tial broadband speeds? ”.

1. INTRODUCTION
Most design choices in P2P applications are dictated

by end user performance and implementation simplic-
ity. Bootstrapping is one such example: a new node
joins a P2P overlay by connecting to a Random set
of neighbors. This simple process provides fault tol-
erance and load balancing to end users and implemen-
tation simplicity to developers. Its downside, however,
is that it is completely oblivious to the requirements
and operating constraints of ISPs and thus it often
ends up causing serious problems such as increasing the
transit costs, worsening the congestion of unpaid peer-

ing links [18], and expediting the upgrade of DSLAMs.
Therefore, several ISPs have allegedly started rate lim-
iting or blocking P2P traffic [9]. In response, P2P appli-
cations have tried to conceal and evade discriminatory
treatment by using dynamic ports and protocol encryp-
tion.
Much of this tension can be avoided by biasing the

overlay construction of P2P towards Locality. It is known
that geographic proximity often correlates with overlap
of consumption patterns [14] and thus bootstrapping
P2P users with other nearby ones can confine P2P traf-
fic within ISPs instead of letting it spill to other domains
over expensive transit links. This simple idea has re-
ceived much attention lately since it is generic and thus
can be applied to a variety of P2P applications inde-
pendently of their internal logic (scheduling, routing,
etc.). Systems like P4P [26] and ONO [6] have been
proposed for localizing the traffic of the BitTorrent file
sharing protocol [7]. P4P proposes bilateral coopera-
tion between ISPs and P2P applications, whereas ONO
is a client-side solution that does not involve the ISP.
Despite the interesting architectures and systems that

have already been proposed, we believe that we still
stand on preliminary ground in terms of our under-
standing of this technology. Although the main ideas
are straightforward, their implications are quite the op-
posite, for several reasons. First, different torrents can
have quite diverse demographics : a blockbuster movie
has peers around the world and thus can create much
more transit traffic than a local TV show whose peers
are mostly within the same country/ISP, especially if
language gets in the way. Predicting the ISP-wide tran-
sit traffic due to P2P amounts to understanding the
demographics of thousands of different torrents down-
loaded in parallel by all the customers. Things become
even more complicated in the case of the BitTorrent pro-
tocol whose free-riding avoidance scheme makes peers
exchange traffic predominately with other peers of simi-
lar speed [17]. Thus even if two ISPs have similar demo-

1

http://arxiv.org/abs/0907.3874v4

graphic composition, the fact that they offer different
access speeds can have a quite pronounced impact on
the amount of transit traffic that they see. The com-
bined effect of demographics and access speeds makes
it risky to generalize observations derived from a par-
ticular ISP and few individual torrents.

2. OUR CONTRIBUTIONS
Our works provides detailed case studies under rep-

resentative ISP-wide workloads as well as holistic views
across multiple (hundreds) of ISPs. In all cases we
demand that the input be as representative as possi-
ble (demographics and speed of different ISPs) and the
methodology be scalable without sacrificing essential
BitTorrent mechanisms like the unchoke algorithm, the
least replicated first chunk selection policy, and the ef-
fect of seeders. We collected representative input data
by scraping up to 100K of torrents of which at least
40K had active clients from Mininova and Piratebay,
the two most most popular torrent hosting sites in the
world according to the Alexa Ranking. We then queried
the involved trackers to construct a map of BitTorrent
demand demographics of up to 3.9M concurrent users
and more than 21M total users over the course of a
day, spread over 11K ISPs. For all those ISPs we ob-
tained speeds from a commercial speed-test service [2]
and from the iPlane project [19].
Our datasets are too big to conduct emulation or

simulation studies. To process them, we employ two
scalable methodologies: a probabilistic one for deriving
speed-agnostic upper and lower bounds on the num-
ber of piece exchanges that can be localized within an
ISP given its demand demographics and a more accu-
rate deterministic one that estimates the resulting traf-
fic matrix taking into consideration the speeds of differ-
ent ISPs. The probabilistic technique allows us to scale
our evaluation up to as many ISPs as we like (we re-
port on the 100 largest ones) whereas the deterministic
one allows us to zoom in into particular ISPs and refine
our estimation of transit traffic and end-user QoS. With
these two tools, we study the performance of a rather
broad family of overlay construction mechanisms that
includes: Locality Only If Faster, (LOIF), an end-user
QoS preserving overlay that switches remote neighbors
for locals only when the latter are faster, and Local-
ity, a simple policy that maximizes transit savings by
switching as many remote neighbors as possible with
local ones, independently of relative speed.

Summary of results: We shed light to several yet
unanswered questions about BitTorrent traffic. Specif-
ically:

• We use the demand demographics of the 100 largest
ISPs from our dataset to derive speed agnostic up-
per and lower bounds on the number of chunk

exchanges that can be kept local. In half of the
ISPs, Locality keeps at least 42% and up to 72%
of chunks internal, whereas Random can go from
less than 1% up to 10%.

Next we focus on the three largest US and the three
largest European ISPs in our dataset and derive their
traffic matrices using both demographic and speed in-
formation. These detailed case studies reveal the fol-
lowing:

• LOIF preserves the QoS of users and reduces the
transit traffic of fast ISPs by around 30% com-
pared to Random. In slower ISPs the savings are
around 10%.

• Locality achieves transit traffic reductions that peak
at around 55% in most of the ISPs that we con-
sidered. The resulting penalty on user download
rates is typically less than 6%.

• The barrier on transit traffic reduction is set by
“unlocalizable” torrents, i.e., torrents with one or
very few nodes inside an ISP. Such torrents ac-
count for around 90% of transit traffic under Lo-
cality and are requested by few users of an ISP
(∼10%). In a sense, the majority of users is subsi-
dizing the transit costs incurred by the few users
with a taste for unlocalizable torrents.

• By limiting the number of allowed inter-AS overlay
links per client huge reductions of transit (>95%)
are possible. The resulting median penalty is around
20% but users on “unlocalizable” torrents incur
huge reduction of QoS (99%).

• Finally, we show that, contrary to popular belief,
increasing the speed of access connections does not
necessarily keep more traffic local as it might bring
an ISP within unchoke distance from other fast
ISPs which previously did not send it traffic.

Overall our results show that there is great potential
from locality for both ISPs and users but there also exist
some cases in which locality needs to be approached
with caution. Cashing in this potential in practice is a
non-trivial matter, but seems to be worthy of further
investigation.
The remainder of the article is structured as follows.

In Sect. 3 we derive upper and lower bounds on the num-
ber of localized unchokes under Random and Locality
overlays, independently of ISP speed distributions. In
Sect. 4 we present our measurement study of BitTor-
rent demographics. We also define a metric for explain-
ing the performance of Random when factoring in real
speed distributions across ISPs. In Sect. 5 we present a
methodology for estimating BitTorrent traffic matrices

2

and in Sect. 6 we define the family of overlay construc-
tion policies that we use later in our study. Sect. 7
characterizes the win-win situations and the tradeoffs
between ISPs and users under different locality policies.
In Sect. 8 we present a validation prototype for study-
ing locality using live torrents and factoring in network
bottlenecks. In Sect. 9 we look at related work and we
conclude in Sect. 10.

3. WHY NOT A RANDOM OVERLAY?
Our goal in this section is to understand the cases in

which a Random selection of neighbors localizes traf-
fic well, and the ones in which it fails thereby creat-
ing the need for locality-biased neighbor selection. To
do so we first need to understand the stratification ef-
fect [17] arising due to the unchoke algorithm [7] used
by BitTorrent to combat free-riding. According to this
algorithm, a node monitors the download rates from
other peers and “unchokes” the k peers (typically 4–5)
that have provided the highest rates over the previous
20 sec interval. These peers are allowed to fetch missing
chunks from the local node over the next 10 sec interval.
Therefore, as long as there are chunks to be exchanged
between neighbors (LRF chunk selection works towards
that [7]), peers tend to stratify and communicate pre-
dominantly with other peers of similar speed.
In this section, we employ probabilistic techniques to

help us build some basic intuition on the consequences
of stratification on inter-domain traffic. We focus on a
single ISP A and torrent T and analyze the conditions
under which Random localizes sufficiently within A the
traffic due to T . In Sect. 4 we will examine the effects
from multiple torrents with different demographics as
well as the effect of speed differences between ISPs. In
Sect. 5 we will go into an even more accurate model
that captures more precisely the unchoke behavior of
leechers (including optimistic unchokes) as well as the
different behavior of seeders. We will also discuss the
impacts of torrents that are not in steady-state and de-
velop a model for them (Appendix C).

3.1 Sparse mode – the easy case for Random
Let V (T) denote the set of BitTorrent nodes partic-

ipating in T , and V (A, T) ⊆ V (T) the subset that be-
longs to ISP A. We say that ISP A is on sparse mode
with respect to torrent T if the nodes outside A that
participate in T have very dissimilar speeds with nodes
that are within A. In this case, because of stratification,
local nodes of A will talk exclusively to each other irre-
spectively of other remote nodes in their neighborhood.
Then to confine all unchokes within A, each local node
needs to know at least k other local neighbors. If W
denotes the size of a neighborhood (40 upon bootstrap
and growing later with incoming connections), then for
Random to localize all traffic it has to be that a ran-

dom draw ofW out of the total |V (T)|−1 (-1 to exclude
the node that is selecting) nodes yields at least k local
ones. The probability of getting x “successes” (i.e., lo-
cal nodes) when drawing randomly W samples from a
pool of |V (T)| − 1 items, out of which |V (A, T)| − 1
are “successes” is given by the Hyper-Geometric distri-
bution HyperGeo(x, |V (T)| − 1, |V (A, T)| − 1,W) [10].
Thus the expected number of localized unchokes is

min(|V (A,T)|−1,W)∑

x=0

min(x, k)·HyperGeo(x, |V (T)|−1, |V (A, T)|−1,W)

(1)

Taking the mean value of the distribution we can
write a condition for Random to localize well in sparse
mode:

W · (|V (A, T)| − 1)

|V (T)| − 1
≥ k (2)

3.2 Dense mode – things getting harder
ISP A is on dense mode with respect to T if the re-

mote nodes participating in T have similar speeds to
the nodes of A. In this case stratification does not au-
tomatically localize traffic inside A. From the stand-
point of the unchoke algorithm, both local and remote
nodes look equally good and thus the number of local-
ized unchokes depends on their ratio in the neighbor-
hood. Thus, although in sparse mode a random draw
yielding x ≤ k local nodes would keep all x unchokes
local, in dense mode it keeps only k ·x/W of them local
in expectation. To get the expected number of localized
unchokes in dense mode we have to substitute min(x, k)
with k · x/W in Eq. (1).

3.3 The promise of Locality
Let’s now consider Locality, an omniscient overlay

construction mechanism that knows all local nodes and
thus constructs highly localized neighborhoods by pro-
viding each node with as many local neighbors as pos-
sible, padding with additional remote ones only if the
locals are less than W . Then in sparse mode Local-
ity localize all unchokes as long as |V (A, T)| − 1 ≥ k,
which is a much easier condition to satisfy than the
one of Eq. (2), else it localizes only |V (A, T)| − 1. In
dense mode Locality localizes all unchokes as long as
|V (A, T)| − 1 ≥ W .

3.4 Locality gains are higher in dense mode
Overall Random localizes sufficiently in sparse mode

as long as it can get a small number of local nodes in
each neighborhood. In dense mode things become more
challenging as it no longer suffices to guarantee a small
threshold of locals but instead Random has to have a
strong majority of locals in each neighborhood. In both
modes, Locality has to satisfy easier conditions to lo-
calize the same number of unchokes. Further, we can

3

actually prove that the improvement factor of Locality
over Random in terms of the number of localized un-
chokes is higher in dense mode than in sparse mode.
We consider only the case with |V (A, T)| − 1 ≥ k and
|V (T)|−1 ≥ W (the other ones can be worked out sim-
ilarly). Based on the previous analysis we get that the
expected improvement factor in sparse mode is:

k

W · |V (A,T)|−1
|V (T)|−1

(3)

In dense mode for |V (A, T)| − 1 ≥ W the improve-
ment factor is:

k

k · |V (A,T)|−1
|V (T)|−1

which is greater than Eq. (3) since W > k. For
|V (A, T)| − 1 < W the improvement factor is:

k · |V (A,T)|−1
W

k · |V (A,T)|−1
|V (T)|−1

=
|V (T)| − 1

W

which can be checked to be greater than Eq. (3) for
the case with |V (A, T)|−1 ≥ k. In Sect. 4.3 we will use
measurement to determine the ISP-wide improvement
factor.

4. DEMOGRAPHICS OF BITTORRENT
We conducted a large measurement study of BitTor-

rent demand demographics. We begin with a presen-
tation of our measurement methodology and then use
the obtained demographics to derive upper and lower
bounds on the number of localized regular unchokes un-
der Random and Locality. At the end of the section we
incorporate the effect of speed differences among ISPs
and show that it is non trivial to predict what happens
to the transit traffic of an ISP when it upgrades the
speed of its residential accesses.

4.1 Measurement methodology
We developed a custom BitTorrent crawler that ob-

tains a snapshot of the IP addresses of all the clients
participating in a set of torrents that are provided as
input. In Table 1 we present the different sets of tor-
rents used in our study. Our crawler first scrapes a
torrent indexing site to obtain .torrent meta infor-
mation files. From them it obtains the addresses of
the corresponding trackers. It queries repeatedly the
trackers and uses the gossip protocol implemented in
the latest versions of BitTorrent to obtain all the IP
addresses of clients participating in each torrent. The
gathered IP addresses are mapped to ISPs and coun-
tries using the MaxMind database [1]. The crawler also
obtains the number of seeders and leechers in each tor-
rent. Crawling an individual torrent takes less than 2
minutes. Thus we get a pretty accurate “snapshot” of

Set name Source Torrents # IPs # ISPs
mn40K Mininova latest 40K 3.9M 10.4K
mn3K Mininova latest 3K 17.4M 10.5K
pb600 Piratebay 600 most popular 21.9M 11.1K

Table 1: Torrent sets collected in the period
Aug-Oct 2009. For mn40K we collected three ver-
sions, with one week in between them. We actu-
ally crawled 100K torrents but only around 40K
had peers. For mn3K and pb600 we repeated the
crawl every hour for one day. The #IPs and
#ISPs for mn40K are per snapshot, whereas for
mn3K and pb600 are daily totals.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

|V(T)|

C
D

F

mn40k
mn3k
pb600

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

|V(A)|

C
D

F

mn40k
mn3k
pb600

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

|T(A)|

C
D

F

mn40k
mn3k
pb600

Figure 1: Summary statistics for the measured
BitTorrent demographics. Cdfs for: |V (T)|, the
number of clients in a torrent, |V (A)|, the total
number of clients in an ISP across all its tor-
rents, and |T (A)|, the number of distinct torrents
requested by the clients of an ISP.

each torrent, i.e., we are sure that the obtained IPs are
indeed present at the same time. The time difference
between the first and last crawled torrent was up to 90
minutes for the largest dataset (mn40K). However, we
tracked individual torrent populations and found them
to be quite stable across a few hours. Thus our dataset
is similar to what we would get if we used a very large
number of machines to crawl more torrents in parallel.
We specifically wanted to avoid that since it would be
a denial of service attack against the hosting sites and
the trackers.

4.2 High level characterization of the dataset
We use the following definitions. We let T denote

the set of torrents appearing in our measurements and
A the set of ISPs that have clients in any of the tor-
rents of T . We let T (A) denote the set of torrents

4

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage of Local Unchokes

C
D

F

mn40K

lower bound rand
upper bound rand
lower bound locality
upper bound locality

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Percentage of Local Unchokes

C
D

F

pb600

lower bound rand
upper bound rand
lower bound locality
upper bound locality

Figure 2: CDF of the upper and lower bound on
the number of localized unchokes under Ran-
dom and Locality for top-100 ISPs in number
of clients. Top: mn40K dataset. Bottom: pb600

dataset.

that have at least one active client in A, and V (A) =
⋃

T∈T (A) V (A, T) the set of all clients of A participating

in any of the torrents T (A). In Fig. 1 we summarize the
measured demographics. Some points worth noting:
The largest torrent has approximately 60K clients in

all three datasets. Looking at the large set, mn40K we
see that most torrents are small, as has already been
shown [22, 21]. mn3K has relatively bigger torrents since
it is a subset of most recent torrents of mn40K, and re-
cency correlates with size. pb600 holds by definition
only big torrents.
Looking at the number of peers and torrents per ISP

we see that mn40K has bigger values which is expected
since it is a much bigger dataset than the other two
and thus contains more and bigger ISPs (notice that
in Table 1 the numbers for mn40K are per snapshot,
whereas for the other two are aggregates over a day,
i.e., totals from 24 snapshots).

4.3 Speed agnostic bounds for the measured
demand demographics

In Sect. 3 we defined the notions of sparseness and
denseness for one ISP and a single torrent and noted
that sparseness helps to localize traffic whereas dense-
ness makes it harder. Therefore, by assuming that all
the torrents T (A) downloaded in A are concurrently in
sparse mode we can get an upper bound on the expected
number of unchokes that can be localized by an overlay
construction policy for the given demand demographics
and any speed distribution among different ISPs. Sim-
ilarly, by assuming that all torrents are in dense mode
we get a lower bound. In Fig. 2 (top) we plot the up-

per and lower bound on localized unchokes for Random
and Locality for the top-100 ISPs in number of clients in
the mn40K dataset (this list includes all major ISPs and
amounts for more than 68% of all IPs in the dataset).
These bounds were computed using formula (1) and
its corresponding version for dense mode for single tor-
rents and iterating over all T ∈ T (A) from our demo-
graphics dataset adding each contribution with weight
|V (A, T)|/

∑

T ′∈T (A) |V (A, T ′)| to capture the relative
importance of T for A.
The lower bound for Random is very close to 0. This

happens because for the huge majority of torrents, an
ISP has only a small minority of the total nodes in the
torrent. In dense mode, Random needs to get most
of these few locals with a random draw which is an
event of very small probability. On the other hand, this
small minority of nodes performs much better in sparse
mode yielding an upper bound for Random that is at
least 10.94% in half of the top-100 ISPs. Locality has
strikingly better performance. Its lower bound is at
least 42.35% and its upper bound 72.51% in half of the
top-100 ISPs. The huge improvement comes from the
fact that Locality requires the mere existence of few
local nodes in order to keep most unchokes inside an
ISP. As noted earlier, the improvement factor is greater
in the difficult case (the lower bound goes from 0 to
above 42% in half of the cases) while it is also quite big
in the easy case (improvement factor of at least 6.63 in
half of the cases).
In Fig. 2 (bottom) we recompute these bounds based

on the pb600 dataset. In this case, the upper bound of
Random is lower since nodes from the same ISP become
an even smaller minority in very large torrents. On the
other hand, Locality benefits in terms of both upper
and lower bounds. This happens because the bounds for
Locality, unlike Random, depend on the absolute rather
than the relative number of local nodes, which increases
with larger torrents. These bounds paint, to the best
of our knowledge, the most extensive picture reported
up to now in terms of covered ISPs and torrents of the
potential of locality given the constraints set by real
demand demographics.

4.4 Factoring the effect of speed
The notions of sparseness and denseness have been

useful in deriving speed-agnostic performance bounds
based on the demand demographics and the overlay con-
struction policy. To refine our analysis and answer more
detailed questions we turn our attention now to the ef-
fect of speed. We do so through what we call Inherent
Localizability.
Let A(T) denote the set of ISPs that have clients in

torrent T . Let also U(A) denote the uplink speed of
nodes in ISP A. We focus on the uplink speeds because
they are typically the bottleneck in highly asymmetric

5

Figure 3: Nodes in ISP A, |V (A, T)|, vs. total
torrent size, |V (T)|, for US1 (top) and EU1 (bot-
tom).

residential broadband accesses [8]. For now it suffices to
assume that speeds differ only between ISPs (we relax
this in Sect. 5 by considering speed distributions within
an ISP). We define the Inherent Localizability Iq(A, T)
of torrent T in ISP A as follows:

Iq(A, T) =
|V (A, T)|

∑

A′∈A(T) |V (A′, T)| · I(A,A′, q)
,

where, I(A,A′, q) = 1 iff U(A) · (1 − q) ≤ U(A′) ≤
U(A)·(1+q), and 0 otherwise. The parameter q ∈ [0, 1],
captures the maximum speed difference that still allows
a local node of A and a remote node of A′ to unchoke
each other. In reality q can be arbitrarily large since
very fast nodes can unchoke much slower ones in the
absence of other fast nodes. We use this simple metric
here in order to gain a basic intuition into the combined
effects of speed and demographics and discard it later
in the context of a more accurate albeit more complex
model for predicting unchoke decisions in Sect. 5. The
inherent localizability Iq(A) of ISP A across all its tor-
rents is simply the weighted sum by |V (A, T)|/|V (A)|
of its Iq(A, T)’s for all torrents it participates in. Iq(A)
captures the density of A’s nodes in torrents that it
shares with other ISPs that have similar speed. Due
to stratification, unchokes will take place among those
nodes. For Random, Iq(A) determines completely its
ability to localize unchokes. Iq(A) also impacts on Lo-
cality. However, Locality’s overall performance depends
on the absolute number of local peers.

4.5 Does being faster help in localizing better?
In this section we use inherent localizibility to study

the effect of access speed on the ability of Random to

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Upload Rate (kbps)

C
D

F EU1
EU2

EU3
US1,US2,US3

EU1*
EU2*

EU3*

US1*

US2*
US3* Ookla

iPlane(*)

Figure 4: CDF of uplink speeds per country.
EU1–EU3, US1–US3 are ISPs studied in Sect. 7.

keep unchokes internally in an ISP. ISPs have a natural
interest in this question since on one hand they want to
upgrade their residential broadband connections to fiber
but on the other hand, they wonder how this will impact
their transit and peering traffic. Next we present a case
study showing that it is difficult to come up with such
predictions without using detailed demographic/speed
information and corresponding methodologies to cap-
ture their combined effect.

4.5.1 A European and an American ISP

Consider the following two ISPs from our dataset
mn40K: US1, with the largest population of nodes in
America (according to our different datasets) and me-
dian upload speed 960 Kbps, and EU1, with the largest
population of nodes in Europe and median upload speed
347 Kbps. In Fig. 3 we plot |V (A, T)| vs. |V (T)| for all
T ∈ T (A) for the two ISPs. A quick glance at the figure
reveals that the two ISPs are radically different in terms
of demand demographics. Because of the proliferation
of English and its English content, US1 is participat-
ing in globally popular torrents. In the figure, the US1
torrents that are globally large (high |V (T)|) have a lot
of clients inside US1. Also, torrents that are popular
in US1 are also globally popular. In EU1 the picture is
very different. The largest torrents inside EU1 are not
among the largest global ones, whereas only very few
globally popular torrents are also popular inside EU1.
This has to do with the fact that EU1 is in a large non-
English speaking European country that produces and
consumes a lot of local, or locally adapted content.

4.5.2 The impact of demographics and speed on in-
herent localizability

We will now compute the inherent localizability of
EU1 and US1. To do this we need the speeds U(A) for
all A that participate in common torrents with the two
ISPs. We have obtained these speeds from the Ookla
Speedtest service [2]. This data set includes measure-
ments of both upload and download speeds of over 19

6

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Upload Rate (kbps)

I q(A
)

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Upload Rate (kbps)

I q(A
)

EU1 (local)
EU2 (local)
EU3 (local)
EU1 (global)

US1
EU1
S1
S2

Figure 5: Top: the inherent localizability of US1
and EU1 for different speeds based on all their
torrents. Bottom: The inherent localizability of
3 European ISPs based on their 10 most popular
local torrents and the 10 most popular torrents
across the entire dataset.

million IP client addresses around the world. In Fig. 4
we plot the cdf of median country speed based on the
above dataset. It is interesting to observe that almost
80% of the countries have similar speeds that are below
610 Kbps where the few remaining ones are sparsely
spread in the range from 610 Kbps to 5.11 Mbps. We
also plot the corresponding cdf from iPlane [19] which
we use later for validation.
Using the above demographics and speeds we plot in

Fig. 5 (top) the localizability of ISP A ∈{EU1,US1} for
different U(A), i.e., we plot how the localizability of
the two ISPs would change if we changed their speeds
while keeping the speeds of all other ISPs fixed. We
have assumed q = 0.25. Results are similar for most
q < 0.5 whereas for larger ones speed starts becoming
marginalized because high q’s imply that any node can
unchoke any other one. There are two points to keep
from this figure. First, the localizability of EU1 is gen-
erally higher than that of US1 for the same speed. This
means that if the two ISPs had similar speed, then the
demographic profile of EU1 depicted earlier in Fig. 3
would lead to a higher inherent localizability since this
ISP holds a larger proportion of the content requested
by its users. Thus Random would perform better in
EU1 than in US1.
A second point to notice is that I0.25(A) is changing

non-monotonically with U(A). This happens because
the set of remote ISPs and consequently the number of
remote clients that can be unchoked by clients of A due
to similar speed (within the margins allowed by a given
q) changes as we vary the speed of A. If the torrents
were spread uniformly across all the ISPs, and ISPs
had similar size, then due to the sparsification of ISPs

on the high speed region (Fig. 4), I0.25(A) would in-
crease monotonically with U(A). The real demograph-
ics and sizes of ISPs, though, lead to the depicted non-
monotonic behavior that exhibits only a general trend
towards higher intrinsic localizibility with higher local
speed. This has important consequences on the ex-
pected amount of transit traffic under different speeds.
For example, by going from speed S1 = 347 Kbps to S2
= 960 Kbps, the inherent localizability of EU1 increases
from around 0.3 to around 0.5 and as a consequence its
transit traffic under Random would decrease as more
unchokes would stay inside the ISP. The opposite how-
ever happens for US1. Increasing the speed from S1 to
S2 reduces the inherent localizability from 0.3 to 0.2,
effectively increasing the number of unchokes going to
remote nodes and thus the transit traffic as well.

4.5.3 Local and global torrents

It seems very difficult to devise simple rules of thumb
for predicting how Iq(A) will change with U(A) with-
out using detailed demographic and speed information
as we did earlier. The complication owes to the tor-
rent mix of each ISP, which includes both global and
local torrents. Global torrents are those very popular
torrents consumed by users around the word. Global
torrents are omnipresent in the entire speed range, but
since the country speed cdf sparsifies at higher ranges
(Fig. 4), fewer of them will be encountered as remote
neighbors when an ISP upgrades to such speeds. This
leads to more internal unchokes of global torrents, ef-
fectively making the inherent localizibility of global tor-
rents a monotonic function of speed.
Local torrents exist at specific ISPs and speed ranges

and thus their behavior during speed upgrades is more
difficult to predict. For example, an ISP at a French
speaking African country will see its unchokes to and
from remote ISPs increasing if it upgrades its residential
accesses to speeds that bring it near the offered speeds
in France, Belgium, and Canada. If it upgrades to even
faster speeds though, its remote unchokes will fall since
its local users would rather unchoke each other than
peers in other countries. In Fig. 5 (top) the localizabil-
ity of US1 fell at around 1Mbps because it entered the
region of many other US ISPs and thus started exchang-
ing unchokes with them for content that although in
English, is local to US (local TV, music, etc.). In Fig. 5
(bottom) we compute the inherent localizability of the
10 most popular local torrents in 3 European countries
and the corresponding 10 most popular across the en-
tire dataset. The global torrents change monotonically
whereas local ones do not. The main point here is that
since the interplay between speed and demographics is
complicated, an ISP can use our methodology to ac-
tually obtain an informed prediction of the impact of
planned changes to its residential broadband offerings

7

on its transit traffic.

5. BITTORRENT TRAFFIC MATRICES
Our analysis up to now has been used for building up

a basic intuition about the parameters that affect the
performance of Random and Locality. However it has a
number of shortcomings. First, it makes the simplifying
assumption that nodes whose speeds do not differ more
than a multiplicative factor (1± q) unchoke each other.
The problem with this assumption is that depending
on the speed distribution, there may not be a single q
that predicts all the unchokes. Also, the analysis does
not capture the behavior of seeders or the optimistic
unchokes from leechers. In the next section we develop
a more accurate model that addresses all these short-
comings and predicts the actual traffic matrix resulting
from a set of torrents. Our objective is to estimate the
aggregate amount of traffic routed to an ISP transit
link due to the torrents of our demographic datasets of
Table 1.
We start with fast numeric methods that capture the

unchoking behavior in steady-state, i.e., when the Least
Replicated First (LRF) chunk selection algorithm [7]
has equalized the replication degree of different chunks
at the various neighborhoods. From that point in time
on, we can factor out chunk availability and estimate
the established unchokes based only on the uplink speed
of nodes. In Appendix C we extend this numeric method
to capture also the initial flash-crowd phase of a torrent.
The resulting model is much slower in terms of execu-
tion time and provides rather limited additional fidelity
since the flash crowd phase is known to be relatively
short compared to the steady-state phase of sufficiently
large downloads (the size of a movie or a software pack-
age) [13, 16, 15]. For this reason we stick to the original
more scalable model.
Notice that although experimentation with real clients

would provide higher accuracy in predicting the QoS
of individual clients, it wouldn’t be able to scale to
the number of torrents and clients needed for study-
ing the impact of realistic torrent demographics at the
ISP level (aggregate traffic in the order of several Gbps).
Our scalable numeric methodology targets exactly that
while preserving key BitTorrent properties like leecher
unchoking (regular and optimistic) and seeding. We
validate the accuracy of our methods against real Bit-
Torrent clients in controlled emulation environments
(Appendix B) and in the wild with live torrents (Sect. 8).

5.1 Modeling Seeders
Let N(s, T) ⊆ be the neighborhood of a seeder node

s of torrent T . Existing seeders typically split their
uplink capacity U(s) among their neighbors following
one of two possible policies. In the Uniform policy, all
neighbors u ∈ N(s, T) get an equal share upload(s, u) =

U(s)/|V (s, T)|. In the Proportional policy, neighbor
u ∈ N(s, T) gets an allotment in proportion to its speed,
i.e., upload(s, u) = U(s)U(u)|/

∑

u′∈N(s,T) U(u′).

5.2 Modeling Leechers
Estimating the traffic flow among leechers is more

involved due to the unchoke algorithm [7]. This reci-
procity based matching algorithm of nodes with similar
speeds has many of the elements of a b-matching prob-
lem [5, 11]. In Appendix A we show how to cast the
problem of estimating the traffic matrix from a torrent
T downloaded by nodes in V (T) as a b-matching prob-
lem in V (T). We also point to work describing how
to get a fast solution (a stable matching M) for the b-
matching. M gives us the pairs of nodes that unchoke
each other in steady-state. Using the stable matching
M and the uplink speeds of nodes, we can compute the
expected rate at which a node v uploads to its neighbor
u:

upload(v, u) =

{

U(v)
k+1

, if (v, u) ∈ M
U(v)
k+1

· 1
|N(v,T)|−k

, otherwise

The first case amounts to neighbors u that are allo-
cated one of v’s k regular unchokes in steady-state. The
second case amounts to the remaining neighbors that re-
ceive only optimistic unchokes and thus share the sin-
gle slot that is allocated optimistically.1 In Appendix B
we have validate the accuracy of the b-matching for es-
timating unchokes during the two typical phases of a
torrent’s lifetime [24]. In Sect. 7 we will use the up-
load rates from the b-matching described above and the
corresponding seeder bandwidth allocation policies of
Sect. 5.1 to compute the amount of BitTorrent traffic
crossing inter-AS links. Before that, however, we in-
troduce the overlay construction policies that we will
study.

6. LOCALITY-BIASED OVERLAYS
Up to now our discussion has been based on a very ba-

sic locality biasing overlay construction algorithm, Lo-
cality, that provides a node v of A participating in T
with min(W, |V (A, T)| − 1) local nodes and pads up to
W with randomly chosen remote nodes. In this section
we want to generalize Locality so that it can capture
the operation of existing overlay construction policies
like the ones proposed in [26, 6].

6.1 A family of locality-biased overlays

1It might be the case that in a stable solution node v is
matched to less than k others (e.g., because it is of low
preference to its neighbors). In such cases we add the unal-
located unchoke bandwidth to the optimistic unchoke band-
width that is evenly spread to choked neighbors.

8

We refer to the resulting extended family of overlay
construction algorithms as Locality(δ, µ). Its operation
is as follows. It starts with a neighborhood N(v, T) of
max(W, |V (T)| − 1) randomly selected neighbors which
are then filtered based on speed comparisons against
the set of local nodes V (A, T)\{v}. These comparisons
are modulated by the parameters δ, µ as follows. Pa-
rameter µ controls the maximum number of allowed re-
mote (inter-AS) neighbors in N(v, T). If the number
of remote nodes in N(v, T) is greater than µ then a
remote node u is substituted by a local w that is not al-
ready in the neighborhood until the number of remotes
reaches µ. If there are no more local nodes for perform-
ing switches then u is taken out of the neighborhood.
If the number of remotes in N(v, T) is already below µ,
then u is substituted by a not already taken local node

w only if 1− U(w)
U(u) < δ.

For now we won’t concern ourselves with implemen-
tation issues as we only use these policies for exploring
the transit reduction vs. user QoS tradeoff. We will
discuss implementation issues later in Sect. 8.

6.2 Some notable members
In the evaluation presented in Sect. 7 we will consider

some members of the Locality(δ, µ) that are of special
interest. These include:

• δ = 0, µ = min(W, |V (T)|−1): In this case there is
no constraint on the number of remote neighbors
whereas switches of remote for local nodes occur
only if the local ones are faster. We call this end-
user QoS preserving policy Local Only If Faster
(LOIF).

• δ = 1, µ = min(W, |V (T)| − 1): Again there is no
constraint on the number of remote neighbors but
local nodes are preferred independently of their
speed comparison to remotes. This is the standard
Locality we introduced in Sect. 3.

• δ = 1, µ = 1: As before all switches of remotes for
locals are performed. Of the remaining remotes
only one is retained and the rest are discarded from
the neighborhood. We call this policy Strict.

7. IMPACT OF LOCALITY ON ISPS & USERS
The bounds presented in Sect. 3 provide a broad view

of the impact of locality on the transit traffic of hun-
dreds of ISPs. They do not, however, provide any in-
formation regarding the impact of locality on end user
download rates. Earlier work [26, 6] has demonstrated
some “win-win” cases in which ISPs benefit by reducing
their transit traffic, while at the same time their users
get faster download rates. In general, however, talking
mostly to local nodes can harm a user’s download rate
by, e.g., depriving it from faster remote seeders and

leechers (the latter can provide optimistic unchokes).
Whether this happens depends on the interplay between
demographics and speed. In this section we employ the
traffic matrix computation methodology of Sect. 5 to
present detailed case studies of the impact of different
overlay construction mechanisms from Sect. 6 on ISPs
and their users. We are primarily interested in discov-
ering the boundaries of the win-win region from locality
for both ISPs and users as well as the reasons behind
them.

7.1 Experimental methodology
Next we present the common parts of our methodol-

ogy that appear in all experiments. Experiment-specific
parts appear in the corresponding sections.

7.1.1 Input to the experiments

Demographics: We used the BitTorrent demand de-
mographics measurements presented in Sect. 4. If not
otherwise stated, our default dataset will be mn40K.

Speed distributions: If not otherwise stated, we as-
sign to an ISP the median uplink speed of its country [2].
We also use speeds from iPlane [19]. One important
point is that these represent last mile bottlenecks. We
consider network bottlenecks later in Sect. 8 using an
experimental prototype and live torrents.

Seeder/leecher ratios: In dataset pb600 we know ex-
actly if a peer is seeder or leacher but in mn40K and mn3K

we do not have this information. To solve this problem,
we obtained from the correspondent tracker the num-
ber of seeders and leechers for each torrent. Then we
made a client in our dataset a seeder with probability
equal to the seeder/leecher ratio of its torrent. Thus
although we don’t have the exact identities of seeders,
we do match the real seeder/leecher ratios. We vali-
dated this technique with the dataset pb600 obtaining
minor variation compared to real seeder distributions.
The raason for this is that the seeder/leecher ratio is
fairly stable across ISPs.

7.1.2 Traffic matrix computation

In our experiments we are interested in quantifying
the effects of locality biased overlay construction on a
“home” ISP A. We perform this as follows.

(1) Using our measured demand demographics we iden-
tify the set of clients V (T) for each torrent T ∈ T (A)
downloaded by clients in our home ISP A. We construct
Random, LOIF, Locality, and Strict overlay graphs among
the nodes in V (T) as described in Sect. 6. We select the
nodes to be seeders as described in Sect. 7.1.1 and as-
sume that they perform proportional seeding.

(2) We feed each overlay graph resulting from the com-
bination of the demographics of a torrent T and an
overlay construction algorithm, together with an up-
link speed distribution to the BitTorrent traffic matrix

9

ISP LOIF Locality Strict
US1 32.00% 55.63% 97.47%
US2 28.47% 48.40% 97.25%
US3 26.04% 41.45% 97.02%
EU1 10.50% 39.12% 96.41%
EU2 11.34% 44.89% 95.95%
EU3 16.18% 35.57% 96.98%

(a) Transit traffic reduction under mn40K
and Ookla speeds.

ISP LOIF Locality Strict
US1 -6.71% -1.32% 2.88%
US2 -5.22% -0.83% 4.43%
US3 -5.74% -1.27% 4.96%
EU1 -1.47% 3.33% 18.59%
EU2 -0.55% 6.35% 11.72%
EU3 -3.21% 2.28% 14.67%

(b) Degradation of median QoS under
mn40K and Ookla speeds.

ISP LOIF Locality Strict
US1 34.03% 77.86% 99.10%
US2 30.56% 69.20% 98.73%
US3 37.11% 78.70% 99.27%
EU1 15.25% 72.80% 99.35%
EU2 21.22% 72.26% 99.18%
EU3 26.57% 71.92% 99.05%

(c) Transit traffic reduction under pb600
and Ookla speeds.

ISP LOIF Locality Strict
US1 16.14% 52.12% 96.63%
US2 8.77% 46.73% 95.68%
US3 9.18% 39.55% 94.66%
EU1 3.94% 43.89% 94.92%
EU2 5.68% 50.89% 94.69%
EU3 12.68% 41.63% 95.62%

(d) Transit Traffic Reduction under mn40K
and iPlane speeds.

Table 2: Results for ISPs EU1-EU3, US1-US3, under different demographic and speed datasets

computation methodology detailed in Sect. 5. The out-
come is a traffic matrix indicating the transmission rate
between any two nodes v, u ∈ V (T).

(3) We adopt a simplified version of routing according
to which all traffic between clients of our home ISP and
an ISP of the same country goes over unpaid peering
links, whereas traffic between clients of our home ISP
and another ISP in a different country goes over a paid
transit link. This simplified routing is actually on the
conservative side, since it reduces the amount of traffic
going to the transit link and thus also the potential
gains from applying locality.

Repeating steps (1)–(3) for all torrents in T (A) we ob-
tain the aggregate amount of traffic going to the transit
link of A due to the torrents appearing in our dataset.

7.1.3 Performance metrics

We study two performance metrics. The first one,
transit traffic reduction compared to random is of inter-
est to the home ISP. It is defined as follows: ((aggre-
gate transit under Random)-(aggregate transit under
Locality(δ, µ))) / (aggregate transit under Random).
The second one, user QoS reduction is of interest to
the clients of the home ISP. It is defined as follows:
(qx(download rate under Random)-qx(download rate
under Locality(δ, µ))) / qx(download rate under Ran-
dom), where qx denotes the x-percentile of download
rate computed over all nodes of home ISP. If not other-
wise stated we will use the median (x = 0.5).

7.2 Comparing overlays
In Table 2(a) we present the transit traffic reduc-

tion under various locality policies with respect to Ran-
dom for the 6 largest ISPs (3 from Europe and 3 from
US) across our different datasets using uplink speeds
from [2]. In Tables 2(b) we present the correspond-
ing impact on user QoS. We have obtained similar re-
sults for several other ISPs. We will comment mainly
based on the ISPs, EU1 and US1, introduced earlier in
Sect. 4.5.1.

7.2.1 Without bounding the number of inter-AS links

We begin with “mild” locality policies that do not
enforce constraints on the number of remote neighbors.
The mildest of all, LOIF, replaces remote with local
nodes in the neighborhood only if the locals are faster.
In the case of US1 this yields a transit traffic reduction
of 32% compared to Random. The corresponding value
for EU1 is 10.5%. US1 is faster than EU1 and performs
more switches of remotes for locals under LOIF and
thus gets a higher reduction of transit traffic. Looking
at Table 2(b) we see that US1 pays no penalty in terms
of QoS reduction for the end users from LOIF. Actu-
ally, the median value gets a slight speedup indicated by
negative values (see Appendix ?? for other percentiles).
The situation for EU1 is similar. The preservation of at
least the same user QoS is an inherent characteristic of
LOIF which by default leads to a win-win situation for
both ISPs and users. The transit savings of LOIF can

10

however be small, as in the case of EU1.
We can reduce the transit traffic further by impos-

ing a less strict switching rule. Locality switches any
remote client with a local one independently of speed.
This increases the savings for US1 to 55.63% compared
to Random whereas the corresponding number for EU1
rises to 39.12%. This is the highest transit reduction
that can be expected without limiting the number of
inter-AS overlay links. This additional transit traffic
reduction does not impose any QoS penalty on the cus-
tomers of US1. EU1 customers on the other hand pay a
small reduction of QoS of 3.33% since they loose some
faster remote neighbors (EU1 is not among the fastest
ISPs according to the country speeds depicted in Fig. 4).
Under Locality win-win is not guaranteed but rather it
depends on speed and demographics. For US1 Local-
ity is again a clear win-win whereas for EU1 is almost
win-win.

7.2.2 Unlocalizable torrents

In the aforementioned results the transit traffic reduc-
tion toped at around 55%. This happens because the
demographics of both US1 and EU1 include a long tail
of torrents with very few local nodes. These torrents
are “unlocalizable” in the sense that all overlay links
for them will have to cross the transit link if the corre-
sponding clients are to be given the standard number of
neighbors according to BitTorrent’s bootstrapping pro-
cess (40-50 depending on version). The unlocalizable
torrents put rigid limits on the transit reduction that
can be achieved without enforcing constraints on the
number of allowed inter-AS overlay links. Interesting,
although the unlocalizable torrents create most of the
transit traffic, they are requested by a rather small per-
centage of the nodes of an ISP. In US1 90% of transit
traffic under Locality is due to only 10% of the nodes.
In EU1 90% of transit traffic is due to 13.44% of nodes.

7.2.3 Bounding the number on inter-AS overlay links

If we want further transit traffic reductions then we
need to control the unlocalizable torrents by enforc-
ing strict constraints on the number of inter-AS over-
lay links. In the last column of Table 2(a) we depict
the performance of Strict that permits up to 1 inter-AS
overlay link per torrent for a given client. Indeed in this
case the transit traffic reduction is huge (around 96%-
97% for both networks). The median user QoS drops by
18.59% in EU1. The situation is much better for US1
where the median speed drops by around 3%. However,
nodes that are downloading unlocalizable torrents pay
a heavy penalty of almost 99%.

7.3 Comparing ISPs
Inspecting Table 2(a) we see that American ISPs in

general achieve higher transit traffic reduction than Eu-

ropean ones, across all locality biased overlay construc-
tion policies. We attribute this to the fact that Ran-
dom performs very poor in those ISPs since their con-
tent is more scattered around the world (they have
smaller Inherent Localizability, Sect. 4.5.1). When com-
paring among American or among European ISPs, the
observed differences correlate mostly with the size of
the ISP. The reason is that in ISPs with approximately
the same Inherent Localizability (e.g., the 3 American
ISPs), Random performs approximately the same, and
thus any difference in transit reduction comes from the
performance of Locality or LOIF. The latter depend on
the absolute size of the ISP since a larger ISP can gather
more easily enough local peers to reach the minimum
number required by the bootstrapping process.

8. VALIDATION ON LIVE TORRENTS
In our study up to now, we have only considered last

mile bottlenecks imposed by access link speeds but no
network bottlenecks due to congestion or ISP traffic
engineering, including throttling [9]. In addition, al-
though we have evaluated the accuracy of b-matching
in a controlled emulation environment (Appendix B),
we can obtain further insights by testing our results in
the wild where we can observe additional effects from
delays and losses that are lacking from an emulation en-
vironment that captures only bandwidths. To address
such issues we integrated LOIF, Locality, and Strict(µ)
into the mainline Bittorrent client (version 5.2.2). Next
we describe briefly some implementation issues and then
move to present the results of connecting to live torrents
with our modified client.

8.1 Prototype implementation
Integrating these policies into the existing BitTor-

rent clients requires addressing some new requirements.
First, we need to know for every Bittorrent client its
ISP and country. For this, we use the MaxMind geolo-
cation database [1]. Next, we need to discover the list
of local clients in order to be able to substitute remote
ones with local ones. For this, we use the PEXmessages
to discover all the participants of the swarm, and then
use the MaxMind database to classify them. Finally,
the last requirement which is specific to LOIF, is to es-
timate the speed of the local and remote clients. For
this, we monitor the rate at which the clients send us
HAVE messages, which indicates how fast they down-
load. Finally, notice that the above method works only
for inferring the speed of leechers. For seeders, we can
only infer the speed of those seeders that unchoke us.
Thus in LOIF we do not switch neighbors for which we
do not have speed information.
Next, we briefly describe our implementation of LOIF.

Many implementation decisions are influenced by how

11

 0

 20

 40

 60

 80

 100

LOIF Local LOIF LOCAL LOIF LOCAL

T
ra

n
s
it
 R

e
d
u
c
ti
o
n
(%

)
Torrent A Torrent B Torrent C

Live b-matching

Figure 6: Comparision between LOIF and Local

Local Remote Percentage of Seed
Torrent A 521 46 63.2%
Torrent B 351 211 12.5%
Torrent C 3 666 66.4%

Table 3: Live torrent characteristics

the python mainline Bittorrent client is designed and
implemented. Every 40 seconds we perform the follow-
ing steps:

• We classify the active neighbor peers in 3 lists:
LISP which contains all peers that belong to the
same ISP as the client, LPeering which contains all
peers that are in ISPs with peering relationships
and LRemote which contains other peers.

• For every peer Ri ∈ LRemote, we close the con-
nection if there exists a peer Lj ∈ LISP with
higher estimated download speed. If such a peer
does not exist then we check if there exists a peer
Cj ∈ LPeering with higher estimated download
speed and in this case again we close the connec-
tion.2

• For each connection that was closed in the last
step, the algorithm opens a new one, giving pref-
erence, first to those IPs that belong to the same
ISP, then to those IPs belonging to peering ISPs
and, finally, to those IPs belonging to other ISPs.

An important detail in our implementation is to al-
ways have a minimum number of neighbors (at least
40). This holds for LOIF and Locality, but not for
Strict. For Strict(µ), we close connections and don’t
open new ones, if we have more than µ remote nodes.

8.2 Experimental methodology
We ran our modified Bittorrent client from an ADSL

connection of ISP EU1. In all the torrents we first
warmed up by downloading 30MB to avoid BitTorrent’s
2The assumption is that nodes in the same country com-
municate over peering links. In our implementation we do
not infer ISP relationships but we can do so with iPlane
Nano [20].

startup phase. In each run, we re-initialize back to the
same 30MB. Next, we download 50MB with each of the
following policies: Random, LOIF, Locality, and Strict.
We repeated each test 5 times, and reported averages
over all runs. During each experiment we logged the
list of IPs and the number of neighbors and used them
later as input to our traffic matrix estimation technique
of Sect. 5. This way, we can compare the estimated
transit savings with the real one on live torrents.

8.3 High, medium, and low localizability tor-
rents

We used our prototype to validate some of our pre-
vious results. Although we cannot scale to the number
of torrents discussed in Sect. 7, we tested torrents at
characteristic points of the demographic spectrum. In
particular, we tested a very popular torrent inside EU1
(Torrent A), an intermediately popular one (Torrent B),
and an unpopular one (Torrent C). In Table 3 we sum-
marize the characteristics of the 3 torrents. In Fig. 6
we present the transit traffic savings as predicted by
our traffic matrix estimation method and as measured
on the live torrent under LOIF and Locality. We do
not present results under Strict as they were always in
perfect agreement.
Overall we see that the results under Locality are

pretty consistent – estimation and measurement are
within 10-20% of each other. In terms of absolute val-
ues things are as expected: in cases A and B there are
enough local nodes to eliminate almost all transit traf-
fic whereas in C there is 0 saving as there do not exist
any local nodes to switch to. The difference between
the 100% savings predicted by b-matching in A and B
and the ones measured in practice has to do with imple-
mentation restrictions. As mentioned earlier, we update
the overlay every 40 sec (which is equal to 4 unchoke
intervals). During that time new incoming remote con-
nections are accepted and can lead to unchokes that
create transit traffic and thus eat away from the 100%
saving expected upon overlay update instants when all
remote connections are switched with local ones.
Under LOIF, the deviation between estimation and

measurement is substantial: the measured transit sav-
ing is twice as big as the estimated one. To interpret
this, we looked at the number of switches of remote
nodes for local ones that LOIF performed in practice
and realized that they were much more than we would
predict. This in effect means that the real LOIF found
the remote nodes to be slower than what expected from
our speed dataset from Ookla [2]. We attribute this
to network bottlenecks or throttling at the inter-AS
links of EU1 or the ISPs that host the remote nodes.
Although certainly interesting, identifying exactly why
the remote nodes appear slower than expected is beyond
the scope of the current work. See [9] for more.

12

9. RELATED WORK

9.1 Early work on locality-biasing
One of the early works on locality-biased overlay con-

struction was Karagiannis et al. [14]. Using traces from
a campus network as well as a six-month-long logfile
from a popular torrent, they showed that there is sub-
stantial overlap in the torrents downloaded by co-located
clients. Another early work from Bindal et al. [4], stud-
ied the effect of limiting the number of inter-AS con-
nections using simulations with synthetic demand. Ag-
garwal et al. [3] studied the effects of locality biasing on
the Gnutella overlay. Apart from studying a different
P2P system, they differ from our work by focusing on
the overlay graph theoretic properties whereas we care
about the traffic matrix.

9.2 Recent systems for locality-biasing
Following up on positive results on the potential of

locality-biasing, a number of actual systems like P4P [26]
and ONO [6] have appeared recently for the BitTor-
rent P2P protocol. The previous works focus on ar-
chitectural and systems questions regarding “how” to
implement locality-biasing, and in particular whether
the goal can be achieved through unilateral client-only
solutions, or bilateral cooperation is essential for mak-
ing locality work for both ISPs and users. In terms of
reported results, [26] presents a variety of use cases for
P4P over different networks and P2P applications like
Pando and Liveswarms. In all cases however, results are
based on one or a few swarms and thus do not capture
the aggregate effects created by tens of thousands of
concurrent swarms with radically different demograph-
ics. The results reported in [6] on the other hand, are
indeed from multiple torrents and networks, but they
only report on the final outcome from using the ONO
system without explaining how the demographics of the
torrents and the speeds of the ISPs affect these out-
comes. The main driving force behind our work is to
explain “when” locality works and “why” when it does
so and thus help in interpreting the results from systems
like P4P and ONO or others to come in the future. Lo-
cality biasing has also been applied to P2P streaming
systems [23].

9.3 BitTorrent measurements
A substantial amount of work has gone into BitTor-

rent measurements [13, 12, 24, 21]. These works go be-
yond locality to characterize things like the arrival pat-
tern of new nodes, the seeding duration, the seeder/leecher
ratios, etc. Our work apart from performing large scale
measurements develops scalable methodologies that per-
mit distilling non-trivial conclusions regarding the inter-
play of demographics, speed, and overlay construction.
Relevant to our work is the recent work of Piatek et

al. [22]. It discusses the potential for win-win outcomes
for ISPs and users but puts most of its emphasis on
implementation issues and the consequences of strate-
gically behaving ISPs. Our work, on the other hand,
is of performance evaluation nature and aims at push-
ing the envelope in terms of both the scalability and
the fidelity of our evaluation methodology. Our dataset
is large; we compute transit reduction from our entire
40K of torrents whereas they use only 1000 torrents
out of their 20K dataset. In terms of methodology, we
capture the effect of stratification from choke/unchoke
whereas [22] assumes cooperative clients and does not
model the effect of speed.

10. CONCLUSIONS
In this paper we collected extensive measurements of

real BitTorrent demand demographics and developed
scalable methodologies for computing their resulting traf-
fic matrix. Based on this we quantified the impacts
of different locality-biasing overlay construction algo-
rithms on ISPs and end-users. By studying several real
ISPs, we have shown that locality yields win-win situa-
tions in most cases. The win-win profile is bounded by
“unlocalizable” torrents that have few local neighbors.
Handling the unlocalizable torrents requires limiting the
number of allowed inter-AS overlay connections. This
has a small impact on the average user but a dire one
on the users of unlocalizable torrents.

11. REFERENCES
[1] MaxMind- GeoIP. info at

http://www.maxmind.com/app/ip-location.
[2] Ookla’s speedtest throughput measures.

https://confluence.slac.stanford.edu/display/IEPM/Ookla’s+Speedtest+
[3] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler.

Can ISPs and P2P users cooperate for improved
performance? ACM SIGCOMM Comput. Commun. Rev.,
37(3):29–40, 2007.

[4] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala,
T. Bates, and A. Zhang. Improving traffic locality in
BitTorrent via biased neighbor selection. In ICDCS’06.

[5] Kataŕına Cechlárová and Tamás Fleiner. On a
generalization of the stable roommates problem. ACM

Trans. Algorithms, 1(1):143–156, 2005.
[6] David R. Choffnes and Fabián E. Bustamante. Taming the

torrent: a practical approach to reducing cross-isp traffic in
peer-to-peer systems. In Proc. of ACM SIGCOMM ’08.

[7] Bram Cohen. Incentives build robustness in BitTorrent. In
Proc. of First Workshop on Economics of Peer-to-Peer

Systems, Berkeley, CA, USA, Jun 2003.
[8] Marcel Dischinger, Andreas Haeberlen, Krishna P.

Gummadi, and Stefan Saroiu. Characterizing residential
broadband networks. In Proc. of ACM IMC ’07.

[9] Marcel Dischinger, Alan Mislove, Andreas Haeberlen, and
Krishna P. Gummadi. Detecting bittorrent blocking. In
Proc. ACM IMC’08.

[10] W. Feller. An Introduction to Probability Theory and Its

Applications. Wiley, New York, 1968.
[11] Anh-Tuan Gai, Fabien Mathieu, Fabien de Montgolfier, and

Julien Reynier. Stratification in p2p networks: Application
to bittorrent. In Proc. of ICDCS’07.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of bittorrent-like

13

http://www.maxmind.com/app/ip-location
https://confluence.slac.stanford.edu /display/IEPM/Ookla's+Speedtest+Throughput+Measures

systems. In Proc. of ACM IMC’05.
[13] Mikel Izal, Guillaume Urvoy-Keller, Ernst W Biersack,

Pascal A Felber, Anwar Al Hamra, and Luis Garces-Erice.
Dissecting bittorrent: Five months in a torrent’s lifetime.
In Proc. of PAM ’04.

[14] Thomas Karagiannis, Pablo Rodriguez, and Konstantina
Papagiannaki. Should internet service providers fear
peer-assisted content distribution? In Proc. ACM IMC’05.

[15] Nikolaos Laoutaris, Damiano Carra, and Pietro Michiardi.
Uplink allocation beyond choke/unchoke or how to divide
and conquer best. In Proc. of ACM CoNEXT’08.

[16] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first
and choke algorithms are enough. In Proc. of ACM IMC’06.

[17] Arnaud Legout, Nikitas Liogkas, Eddie Kohler, and Lixia
Zhang. Clustering and sharing incentives in bittorrent
systems. In Proc. of ACM SIGMETRICS ’07.

[18] Tom Leighton. Improving performance on the internet.
Commun. ACM, 2009.

[19] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin
Dixon, Thomas Anderson, Arvind Krishnamurthy, and
Arun Venkataramani. iPlane: An information plane for
distributed services. In OSDI, 2006.

[20] Harsha V. Madhyastha, Ethan Katz-Bassett, Thomas
Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. iPlane Nano: Path prediction for
Peer-to-Peer applications. In Proc. of NSDI’09.

[21] D. Menasche, A. Rocha, B. Li, D. Towsley, and
A. Venkataramani. Content availability in swarming
systems: Models, measurements and bundling implications.
In Proc. of ACM CoNEXT’09.

[22] Michael Piatek, Harsha V. Madhyastha, John P. John,
Arvind Krishnamurthy, and Thomas Anderson. Pitfalls for
ISP-friendly P2P design. In Proc. of HotNets-VIII.

[23] Fabio Picconi and Laurent Massoulié. ISP friend or foe?
making P2P live streaming ISP-aware. In Proc. of IEEE

ICDCS’09.
[24] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips.

The BitTorrent P2P file-sharing system: Measurements
and analysis. In Proc. of IPTPS’05.

[25] Jimmy J. M. Tan. A necessary and sufficient condition for
the existence of a complete stable matching. J. Algorithms,
12(1):154–178, 1991.

[26] Haiyong Xie, Yang Richard Yang, Arvind Krishnamurthy,
Yanbin Liu, and Avi Silberschatz. P4P: Provider portal for
applications. In Proc. of ACM SIGCOMM’08.

APPENDIX

A. MODELING REGULAR UNCHOKES WITH
A B-MATCHING

The input to a b-matching problem consists of a set
of nodes V , and functions n : V → 2V , b : V → Z

+,
and p : V 2 → R

+ defined as follows: n(v) defines the
set of nodes to which v can be matched with (match-
ing is symmetric here, and thus u ∈ n(v) iff v ∈ n(u));
b(v) defines the number of parallel matchings that v is
allowed to establish; p(v, u) is a measure of the pref-
erence that v has for becoming stably matched to u.
A solution to a b-matching is a set M of matchings
(edges) between pairs of nodes in V , such that for each
matched pair (v, u) ∈ M , the matching and capacity
constraints n, b are satisfied and further, there exists no
“blocking pair” (v′, u′) ∈ M , i.e., no pair that satisfies:
p(v, v′) > p(v, u) and p(v′, v) > p(v′, u′).
It is easy to see that there exists a direct mapping

from BitTorrent to b-matching [11]. Looking at a par-
ticular node v and torrent T : the neighborhoodN(v, T)
can be mapped to the allowed matchings n(v); the num-
ber of parallel unchokes k (default value for k being 4)
at each 10 sec interval corresponds to b(v), the number
of matchings allowed for v; the uplink capacity U(v) of
a BitTorrent client v can be used as a measure of the
preference p(u, v) that each node u 6= v would have for
being matched with v in the context of a b-matching. b-
matchings in which the preference for a node is the same
independently of who is considering, i.e., for given u,
p(v, u) = p(v′, u), ∀v, v′, are said to have a global pref-
erence function. Tan [25] has shown that the existence
of a stable solution for the b-matching problem relates
to the non-existence of circles in the preference func-
tion p, which is a condition that is certainly satisfied
under a global preference function like U(v). There-
fore, for the aforementioned mapping from BitTorrent
to b-matching, one can use a simple O(|V (T)|·k) greedy
algorithm to find the unique stable matching that exists
in this case [11].3

B. VALIDATION OF MODELING
In this section we validate the accurately of modeling

the unchoke algorithm using a b-matching. We look at
the two typical phases of a torrent’s lifetime [24].

B.1 Startup phase
During the initial phase of a new torrent leechers hold

few chunks and thus whether two nodes unchoke each
other depends, beyond their speeds, on the set of chunks
they hold. The b-matching modeling of unchoke de-
scribed in Sect. 5.2 assumes that steady-state has been
reached and thus chunk (in)availability does not affect
the resulting matchings. In Appendix C we extend this
basic matching algorithm to allow it to also capture
the completion level c(v) of a node, i.e., the percent-
age of a file of total size C that it holds. We have
used this completion-level aware b-matching in conjunc-
tion with small initial completion levels c(v) < 1% for
all leechers to estimate the effect chunk availability on
the aggregate capacity of a torrent. BitTorrent’s LRF
chunk selection strategy is used for expediting the con-
vergence to steady state. We verified this by comparing
our two implementations of b-matching. In Fig. 7 we
give an indicative example to show that for everything
but very small files, the startup phase is much shorter
than steady state. For this reason we can ignore it at
small cost in terms of accuracy and focus on the baseline
b-matching that is more scalable to large datasets than
the more complicated one involving completion levels.

3Uniqueness is guaranteed under the assumption that there
are not ties in speeds. We made sure that his is the case by
adding to our speed datasets a very small random noise.

14

10 20 30 40 50 60 70 80 90 100
3

4

5

6

7

8

9

10

11

12
x 10

4

time (sec)

s
y
s
t
e
m

c
a
p
a
c
i
t
y

(
k
b
p
s
)

bmatching completion

bmatching

Figure 7: Aggregate system capacity from base-

line b-matching and b-matching with completion

levels. Parameters: |V | = 40, uplink rates ran-

domly distributed with mean 2 Mbps, C = 10000,

c0(v) < 1%, ∀v, unchoke duration=10 sec, chunk

size=32 kBytes. The more complex version con-

verges within a minute to the steady-state value pre-

dicted by the baseline b-matching. Download com-

pletion requires around 30 mins.

Peer ID

P
e
e
r

I
D

 0 5 10 15 20 25 30 35 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

(a) b-matching Unchoking

Peer ID

P
e
e
r

I
D

 0 5 10 15 20 25 30 35 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

(b) Emulation Unchoking

Figure 8: Unchoking Patterns

B.2 Steady state
Next we validate the extent at which the steady state

matchings predicted by b-matching resemble the un-
choking behavior of an actual mainline client of BT
(v.3.4.2) running in a controlled emulation environment.
More specifically, we set-up a dummy torrent with 40
clients, the slowest of which, was given an uplink ca-
pacity of 80 Kbps, whereas successive ones were made
increasingly faster using a step of 24 Kbps. We chose
such a small increment to recreate a rather difficult en-
vironment for stratification [17] to arise. For each client,
we measured the frequency at which the client unchokes
each other client, and then we put a mark on Fig. 8(b)
for the k clients that it unchokes more frequently (client
ids on the figure are assigned according to upload band-
width in increasing order). Comparing with Fig. 8(a)

that depicts the same information from the execution of
b-matching under the same uplink capacities, it is easy
to see that b-matching provides a reasonable prediction
of the real unchokes that take place and therefore can be
used as a scalable tool for processing huge numbers of
small and large torrents that would otherwise be impos-
sible to simulate concurrently. We got similar accuracy
using many other torrent sizes and uplink distributions,
including empirical ones from measurement.

C. COMPLETION LEVEL AWARE B-MATCHING

C.1 Edge filtering
Let c(v) denote the number of chunks already down-

loaded by node v out of the total C chunks that make
up a complete file. For a pair of neighbors (v, u) with
c(v) ≥ c(u) let I(v → u), c(v)− c(u) ≤ I(v → u) ≤ c(v)
denote the number of chunks of v that “are of interest”
to u, i.e., chunks that v has downloaded but u hasn’t.
It is easy to see that I(u → v) = c(u)−c(v)+I(v → u),
0 ≤ I(u → v) ≤ c(u). If we assume that the chunks held
at some point in time by a node are a random subset
of the entire set of chunks, which is reasonable granted
LRF [7], then it follows that:

pvu(x) = P{I(v → u) = x, I(u → v) = c(u)− c(v) + x}

= HyperGeo(c(u)− x, c(v), C, c(u))
(4)

where HyperGeo(d, p, s, ss) denotes a hyper geomet-
ric pmf [10] giving the probability of drawing d “suc-
cesses” with a sample of size ss from a pool of p items,
of which s are “successes”. Then the expected amount
of interest in the two directions is:

E{I(v → u)} =

c(v)
∑

x=c(v)−c(u)

x · pvu(x)

E{I(u → v)} =

c(v)
∑

x=c(v)−c(u)

(c(u)− c(v) + x) · pvu(x)

(5)
For pair (v, u) we define its filtering probability to be:

φ(v, u) = min

(

E{I(v → u)}

T · U(v) · (σ · k)−1
,

E{I(u → v)}

T · U(u) · (σ · k)−1
, 1

)

(6)
where σ is the size of a chunk and T is the dura-

tion of an unchoke interval. Given an instance of a b-
matching problem 〈V, n, b, p〉 we filter it to obtain a new
one 〈V, n′, b, p〉 in which we keep an edge (v, u), meaning
that v ∈ n(u), u ∈ n(v) and v ∈ n′(u), u ∈ n′(v), with
probability φ(v, u), whereas we drop it with probability
1− φ(v, u).

15

C.2 Time-evolving completion ratios
Let ct(v) be the completion ratio of node v at time t

and letMt be the stable matching obtained from solving
the b-matching 〈V, n′, b, p〉 in which n′ is obtained from
n after applying the filtering procedure of Sect. C.1 with
completion ratios {ct(v) : v ∈ V }. Then the completion
ratios of nodes can be updated at the end of the unchoke
interval as follows:

ct+T (v) = ct(v)+
∑

u:(v,u)∈Mt

min

(

E{I(u → v)},
T · U(u)

σ · k

)

(7)
Thus with the above we have a method for mapping

the effects of completion levels on the state of a torrent
and consequently on the resulting matchings.

16

	1 introduction
	2 Our contributions
	3 Why not a Random Overlay?
	3.1 Sparse mode – the easy case for Random
	3.2 Dense mode – things getting harder
	3.3 The promise of Locality
	3.4 Locality gains are higher in dense mode

	4 Demographics of BitTorrent
	4.1 Measurement methodology
	4.2 High level characterization of the dataset
	4.3 Speed agnostic bounds for the measured demand demographics
	4.4 Factoring the effect of speed
	4.5 Does being faster help in localizing better?
	4.5.1 A European and an American ISP
	4.5.2 The impact of demographics and speed on inherent localizability
	4.5.3 Local and global torrents

	5 BitTorrent traffic matrices
	5.1 Modeling Seeders
	5.2 Modeling Leechers

	6 Locality-biased Overlays
	6.1 A family of locality-biased overlays
	6.2 Some notable members

	7 Impact of Locality on ISPs & Users
	7.1 Experimental methodology
	7.1.1 Input to the experiments
	7.1.2 Traffic matrix computation
	7.1.3 Performance metrics

	7.2 Comparing overlays
	7.2.1 Without bounding the number of inter-AS links
	7.2.2 Unlocalizable torrents
	7.2.3 Bounding the number on inter-AS overlay links

	7.3 Comparing ISPs

	8 Validation on live torrents
	8.1 Prototype implementation
	8.2 Experimental methodology
	8.3 High, medium, and low localizability torrents

	9 Related Work
	9.1 Early work on locality-biasing
	9.2 Recent systems for locality-biasing
	9.3 BitTorrent measurements

	10 Conclusions
	11 References
	A Modeling regular unchokes with a b-matching
	B Validation of modeling
	B.1 Startup phase
	B.2 Steady state

	C Completion level aware b-matching
	C.1 Edge filtering
	C.2 Time-evolving completion ratios

